Universal algebra over locally presentable categories

Yuto Kawase

RIMS, Kyoto University

November 24, 2024.

Categories in Tokyo 1st

 $\leftarrow \mathsf{Today's} \mathsf{ slides}$

This work is supported by JSPS KAKENHI Grant Numbers JP24KJ1462.

3 Filtered colimit elimination

Relativization via monads

Theorem ([Lin69])

There is an equivalence

$$\mathbf{Th}^{S} \simeq \mathbf{Mnd}_{\mathbf{f}}(\mathbf{Set}^{S}).$$

Here,

 \mathbf{Th}^{S} : the category of S-sorted equational theories, $\mathbf{Mnd}_{f}(\mathbf{Set}^{S})$: the category of finitary monads on \mathbf{Set}^{S} .

S-sorted equational theory = finitary monad on \mathbf{Set}^{S}

 \downarrow generalize

 $\begin{aligned} \mathscr{A}\text{-relative algebraic theory} &= \kappa\text{-}ary \text{ monad on } \mathscr{A} \\ (\mathscr{A}\text{: a locally } \kappa\text{-}presentable category}) \end{aligned}$

Relative algebraic theories

 \mathbf{Set}^{S} -relative algebraic theories = S-sorted equational theories

A generalized Linton theorem

Theorem ([Kaw23; Kaw24])

For a locally $\kappa\text{-presentable}$ category $\mathscr{A},$ there is an equivalence

 $\mathbf{Th}_{\kappa}^{\mathscr{A}}\simeq\mathbf{Mnd}_{\kappa}(\mathscr{A}).$

Here,

 $\mathbf{Th}_{\kappa}^{\mathscr{A}}$: the category of \mathscr{A} -relative (κ -ary) algebraic theories, $\mathbf{Mnd}_{\kappa}(\mathscr{A})$: the category of κ -ary monads on \mathscr{A} .

Example: small categories

Example

A small category consists of:

• a base quiver
$$\operatorname{mor} \mathscr{C} \xrightarrow[]{d}{\longrightarrow} \operatorname{ob} \mathscr{C};$$

- a total operator $\operatorname{id} \colon \operatorname{ob} \mathscr{C} \to \operatorname{mor} \mathscr{C};$
- \bullet a partial operator $\circ \colon \mathrm{mor} \mathscr{C} \times \mathrm{mor} \mathscr{C} \to \mathrm{mor} \mathscr{C}$ such that

 $g \circ f$ is defined iff d(g) = c(f)

which satisfy the following:

•
$$d(id(x)) = x$$
 and $c(id(x)) = x$;

- $d(g \circ f) = d(f)$ and $c(g \circ f) = c(g)$ whenever d(g) = c(f);
- $f \circ id(d(f)) = f$ and $id(c(f)) \circ f = f$;
- $(h \circ g) \circ f = h \circ (g \circ f)$ whenever d(h) = c(g) and d(g) = c(f).

Small categories are algebras over quivers.

Further examples

Example

		algebras over \sim
small categories	\rightsquigarrow	quivers
UDO semirings	\rightsquigarrow	posets
partial Boolean algebras	\rightsquigarrow	graphs
monoid-graded rings	\rightsquigarrow	monoid-graded sets
generalized complete metric spaces	\rightsquigarrow	generalized metric spaces
Banach spaces	\rightsquigarrow	pointed metric spaces

A technical remark

Definition ([PV07])

- (κ -ary) partial Horn theory \cdots a logical theory based on <u>multi-sorts</u>, <u>partial</u> functions, relations, and (partial) Horn implications.
- $Mod S \cdots$ the category of models of a partial Horn theory S.

Theorem ([PV07])

TFAE for a category \mathscr{A} :

- **(**) \mathscr{A} is locally κ -presentable.
- $\ \, @ \ \, \mathscr{A} \simeq \mathbf{Mod} \, \mathbb{S} \text{ for some } \kappa \text{-ary partial Horn theory } \mathbb{S}.$

We actually define S-relative algebraic theories for partial Horn theories S.

 $\rightsquigarrow \quad \mathscr{A}\text{-rel. alg. theory } = \ \mathbb{S}\text{-rel. alg. theory where } \mathscr{A} \simeq \mathbf{Mod}\,\mathbb{S}.$

3 Filtered colimit elimination

Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

 $(\Omega,E):$ a single-sorted algebraic theory. $\mathscr{E}\subseteq\mathbf{Alg}(\Omega,E):$ fullsub. TFAE:

• $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is definable by equations.

2 $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under <u>products</u>, <u>subobjects</u>, and <u>quotients</u>.

closed under products: $A_i \in \mathscr{E} \implies \prod_i A_i \in \mathscr{E}$. closed under subobjects: $B \subseteq A$: sub, $A \in \mathscr{E} \implies B \in \mathscr{E}$. closed under quotients: $A \twoheadrightarrow B$: surj, $A \in \mathscr{E} \implies B \in \mathscr{E}$.

A generalized Birkhoff's theorem

Theorem ([Kaw23; Kaw24])

 (Ω, E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$: fullsub. TFAE:

- $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is definable.
- $\mathfrak{C} \subseteq \mathbf{Alg}(\Omega, E) \text{ is closed under <u>products</u>, <u>closed subobjects</u>, <u>(U, \kappa)-pure</u> <u>quotients</u>, and <u><math>\kappa$ -filtered colimits</u>.

single-sorted alg. (Set-relative alg.)		\mathscr{A} -relative alg.	
products	\rightsquigarrow	products	
subobjects	\rightsquigarrow	closed subobjects	
quotients	\rightsquigarrow	(U,κ) -pure quotients	
	\rightsquigarrow	κ -filtered colimits (new)	

What are closed subobjects and (U, κ) -pure quotients?

$$\begin{array}{ccc} \mathscr{A} & \cdots & \text{a locally } \kappa\text{-presentable category} \\ (\Omega, E) & \cdots & \text{an } \mathscr{A}\text{-rel. alg. theory} \\ \mathbf{Alg}(\Omega, E) \overset{U}{\longrightarrow} \mathscr{A} & \cdots & \text{the forgetful functor} \end{array}$$

Informal definition

A subalg. B ⊆ A in Alg(Ω, E) is closed if:
For every relation R in "the language of 𝒜," R(𝔥) holds in UA ⇒ R(𝔥) holds in UB.
A ^p→ B in Alg(Ω, E) is a (U, κ)-pure quotient if:
For every κ-ary formula in "the language of 𝒜,"

$$\varphi(\vec{b})$$
 holds in $UB \implies \exists \vec{a} \xrightarrow{Up} \vec{b}$ s.t. $\varphi(\vec{a})$ holds in UA .

Example

 $\mathbf{Pos} \cdots$ the category of posets. a Pos-rel. alg. theory defined by $(\Omega, \varnothing) \quad \cdots$ $\Omega := \{\ominus\}, x \ominus y \text{ is defined iff } x \ge y.$ $\operatorname{Alg}(\Omega, \varnothing) \xrightarrow{U} \operatorname{Pos} \cdots$ the forgetful functor. In Alg (Ω, \emptyset) , under $x \ominus y := x - y$ in \mathbb{N} , • $\{0 < 2 \mid 3\} \subseteq \{0 < 1 < 2 < \cdots\}$... subalgebla, but not closed. • $\{0 < 2 < 4\} \subseteq \{0 < 1 < 2 < \dots\}$... closed subalgebla. • $\left\{ \begin{array}{c} 0 & 0 \\ \wedge & \\ 1 & 1 \\ & \wedge \\ 2 \end{array} \right\} \rightarrow \left\{ \begin{array}{c} 0 \\ \wedge \\ 1 \\ \ddots \\ 2 \end{array} \right\} \quad \cdots \text{ surjection, but not a } (U,\aleph_0)\text{-pure quotient.}$ $\bullet \left\{ \begin{array}{cccc} 0 & 0 & 0 & \cdots \\ & \wedge & \wedge & \\ & 1 & 1 & \cdots \\ & & \wedge & \\ & & 2 & \cdots \end{array} \right\} \rightarrow \left\{ \begin{array}{c} 0 \\ \wedge \\ 1 \\ \wedge \\ 2 \\ \wedge \end{array} \right\} \qquad \cdots \qquad (U,\aleph_0)\text{-pure quotient,} \\ \text{ but not } (U,\aleph_1)\text{-pure quotient.} \end{array} \right.$

1/1 13/25

Filtered colimits are necessary

Example (Set^{\mathbb{N}}-relative algebra [ARV12])

$$\mathscr{E} := \{1\} \cup \{A \in \mathbf{Set}^{\mathbb{N}} \mid \exists m \in \mathbb{N}. \ A_m = \emptyset\}.$$

 $\mathscr{E} \subseteq \mathbf{Set}^{\mathbb{N}}$ is closed under...

- ✓ products
- \checkmark closed subobjects = sort-wise injections
- \checkmark pure quotients = sort-wise surjections

 $\times \quad \text{filtered colimits} \quad$

Example (Set_{ω}-relative algebra [Kaw25])

 $\mathbf{Set}_{\omega} \cdots$ the category of sets with countably many constants $(c_n)_n$.

$$\mathscr{E} := \{1\} \cup \{A \in \mathbf{Set}_{\omega} \mid \exists i, j \text{ s.t. } c_i \neq c_j \text{ in } A\}.$$

 $\mathscr{E} \subseteq \mathbf{Set}_{\omega}$ is closed under...

- ✓ products
- \checkmark closed subobjects = subalgebras
- \checkmark pure quotients = surjections that do not merge any constants
- \times filtered colimits

The filtered colimit elimination problem

However, filtered colimits are not required for Set-rel. alg. in Birkhoff's theorem.

Question

Why can filtered colimits be eliminated in the case of Set-relative algebras?

Answer

The category Set satisfies a "noetherian" condition.

1 Relativization of universal algebra

A noetherian condition for categories

Definition ([Kaw25])

A category \mathscr{A} satisfies the ascending chain condition (ACC) if it has no chain $A_0 \to A_1 \to A_2 \to \cdots$ of objects such that there is no morphism $A_n \leftarrow A_{n+1}$ for all n.

Example

 \mathbf{Set} satisfies ACC.

Proof.

Let $A_0 \to A_1 \to \cdots$ be an ω -chain of sets. If there is no map $A_0 \leftarrow A_1$, then $A_0 = \emptyset$ and $A_1 \neq \emptyset$. Thus, a map $A_1 \leftarrow A_2$ exists.

More generally,

Proposition

 \mathbf{Set}^S satisfies ACC \Leftrightarrow the set S is finite.

Filtered colimit elimination

Theorem ([Kaw25; Kaw24])

 (Ω, E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$: fullsub. If \mathscr{A} satisfies ACC, TFAE:

 $\regic{0.2}{$\mathcal{E}\subseteq \mathbf{Alg}(\Omega,E)$ is closed under <u>products</u>, <u>closed subobjects</u>, (U, \kappa)-pure <u>quotients</u>, and <math>\kappa$ -filtered colimits. }

Some applications of filtered colimit elimination

Corollary

- Set satisfies ACC.
 - \rightsquigarrow fil.colim.elim. holds for single-sorted alg.
 - \rightsquigarrow The classical Birkhoff theorem [Bir35]
- **Set**ⁿ satisfied ACC.
 - \rightsquigarrow fil.colim.elim. holds for finite-sorted alg.
 - \rightsquigarrow This subsumes a result in [ARV12].
- Pos satisfied ACC.
 - \rightsquigarrow fil.colim.elim. holds for ordered alg.
 - \rightsquigarrow This subsumes a result in [Blo76].
- Met_∞, the category of generalized metric spaces, satisfied ACC.
 →→ fil.colim.elim. holds for metric alg.
 - \rightsquigarrow This subsumes a result in [Hin16].

Filtered colimit elimination: sketch of proof

fullsub $\mathscr{E} \subseteq \operatorname{Alg}(\Omega, E)$: closed under products, closed sub, (U, κ) -pure quo. $(A_J)_{J \in \mathbb{I}}$: a κ -filtered diagram s.t. $A_J \in \mathscr{E}$.

For each $J \in \mathbb{I}$, we can construct a "nice" wide sub-diagram $J \in \mathbb{I}_J \subseteq \mathbb{I}$.

 $\rightsquigarrow \mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under κ -filtered colimits.

Weak converse

Theorem ([Kaw25])

 \mathscr{A} : a l.f.p. category. Assume that, for every fullsub. of \mathscr{A} , closure under filtered colimits follows from the others: $\mathbf{P}(\text{products})$, $\mathbf{S}(\text{closed sub})$, $\mathbf{H}(\aleph_0$ -pure quo). Then,

• If $\varnothing \xrightarrow{!} 1$ in \mathscr{A} is strongly monic, the fullsub $\mathscr{A}_{fp} := \{ \text{finitely presentable objs} \} \subseteq \mathscr{A} \text{ satisfies ACC.}$

Sketch of proof: Let $A_0 \to A_1 \to A_2 \to \cdots$ in $\mathscr{A}_{\mathrm{fp}}$. Consider

$$\mathscr{E} := \{ X \mid \exists n. \ X \xrightarrow{\exists} A_n \} \subseteq \mathscr{A}.$$

Using finite presentability, its \mathbf{HSP} -closure can be computed as

$$\mathbf{HSP}(\mathscr{E}) = \mathbf{S}(1) \cup \mathbf{H}(\mathscr{E}).$$

Since $A_n + A_n \in \mathscr{E}$ $(\forall n)$, $B := \underset{n \in \omega}{\operatorname{Colim}} (A_n + A_n) \in \operatorname{HSP}(\mathscr{E})$. The additional conditions ensure that $B \notin \mathbf{S}(1)$. $\therefore B \in \mathbf{H}(\mathscr{E})$

$$A_0 \to A_1 \to A_2 \to \cdots \quad \text{in } \mathscr{A}_{\rm fp}$$
$$\mathscr{E} := \{X \mid \exists n. \ X \xrightarrow{\exists} A_n\} \subseteq \mathscr{A}$$
$$B := \operatorname{Colim}_{n \in \omega} (A_n + A_n) \in \mathbf{H}(\mathscr{E})$$

Thus, we have:

Thus, $A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots$ eventually "stabilizes."

Open problems

Open problem 1

Is there any locally presentable category that satisfies filtered colimit elimination but not ACC?

More precisely, is there any κ -ary partial Horn theory \mathbb{S} for some κ that satisfies the following conditions?

- Every full subcategory of Mod S is closed under κ-filtered colimits whenever it is closed under products, S-closed subobjects, and κ-pure quotients.
- The category $\mathbf{Mod}\,\mathbb{S}$ does not satisfy ACC.

The next one is weaker than 1 and independent of partial Horn theories:

Open problem 2

Is there any locally finitely presentable category that does not satisfy ACC but satisfies it for the full subcategory of finitely presentable objects?

Thank you!

Today's slides

My homepage

References I

- [AR04] J. Adámek and J. Rosický. "On pure quotients and pure subobjects". In: Czechoslovak Math. J. 54(129).3 (2004), pp. 623–636.
- [AR94] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories. Vol. 189. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994.
- [ARV12] J. Adámek, J. Rosický, and E. M. Vitale. "Birkhoff's variety theorem in many sorts". In: Algebra Universalis 68.1-2 (2012), pp. 39–42.
- [Adá+21] J. Adámek et al. "Finitary monads on the category of posets". In: Math. Structures Comput. Sci. 31.7 (2021), pp. 799–821.
- [BH12] B. van den Berg and C. Heunen. "Noncommutativity as a colimit". In: Appl. Categ. Structures 20.4 (2012), pp. 393–414.
- [BMW12] C. Berger, P.-A. Melliès, and M. Weber. "Monads with arities and their associated theories". In: J. Pure Appl. Algebra 216.8-9 (2012), pp. 2029–2048.
- [Bir35] G. Birkhoff. "On the structure of abstract algebras". In: Math. Proc. Cambridge Philos. Soc. 31.4 (1935), pp. 433–454.
- [Blo76] S. L. Bloom. "Varieties of ordered algebras". In: J. Comput. System Sci. 13.2 (1976), pp. 200–212.
- [BG19] J. Bourke and R. Garner. "Monads and theories". In: Adv. Math. 351 (2019), pp. 1024–1071.
- [CV98] A. Carboni and E. M. Vitale. "Regular and exact completions". In: J. Pure Appl. Algebra 125.1-3 (1998), pp. 79–116.
- [Gol03] J. S. Golan. Semirings and Affine Equations over Them: Theory and Applications. Vol. 556. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003, pp. xiv+241.

References II

[Hin16]	W. Hino. Varieties of metric and quantitative algebras. 2016. arXiv: 1612.06054 [cs.L0].
[Kaw23]	Y. Kawase. Birkhoff's variety theorem for relative algebraic theories. 2023. arXiv: 2304.04382 $[{\tt math}.{\tt CT}].$
[Kaw24]	Y. Kawase. Relativized universal algebra via partial Horn logic. 2024. arXiv: 2403.19661 [math.CT].
[Kaw25]	Y. Kawase. "Filtered colimit elimination from Birkhoff's variety theorem". In: J. Pure Appl. Algebra 229.1 (2025), Paper No. 107794, 25.
[Lin69]	F. E. J. Linton. "An outline of functorial semantics". In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67). Springer, Berlin, 1969, pp. 7–52.
[LP23]	R. B. Lucyshyn-Wright and J. Parker. "Diagrammatic presentations of enriched monads and varieties for a subcategory of arities". In: <i>Appl. Categ. Structures</i> 31.5 (2023), Paper No. 40, 39.
[PV07]	E. Palmgren and S. J. Vickers. "Partial Horn logic and cartesian categories". In: Ann. Pure Appl. Logic 145.3 (2007), pp. 314–353.
[Ros21]	J. Rosický. "Metric monads". In: Math. Structures Comput. Sci. 31.5 (2021), pp. 535–552.
[Wea95]	N. Weaver. "Quasi-varieties of metric algebras". In: Algebra Universalis 33.1 (1995), pp. 1–9.