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Relativization via monads

Theorem ([Lin69])

There is an equivalence
ThS ≃Mndf(Set

S).

Here,

ThS : the category of S-sorted equational theories,

Mndf(Set
S): the category of finitary monads on SetS .

S-sorted equational theory = finitary monad on SetS

↓ generalize

A -relative algebraic theory = κ-ary monad on A
(A : a locally κ-presentable category)

1/1 3/25



Relative algebraic theories

Informal definition [Kaw23]

A : a (locally presentable) category
An A -relative algebraic theory consists of:

a set Ω of partial operators;

a set E of implications · · · ( YYY
postcondition

whenever XXX
precondition

)

such that

For each operator ω ∈ Ω, its domain must be defined by “A ’s language.”

For each implication in E, its precondition must be written in “A ’s
language.”

SetS-relative algebraic theories = S-sorted equational theories

1/1 4/25



A generalized Linton theorem

Theorem ([Kaw23; Kaw24])

For a locally κ-presentable category A , there is an equivalence

ThA
κ ≃Mndκ(A ).

Here,

ThA
κ : the category of A -relative (κ-ary) algebraic theories,

Mndκ(A ): the category of κ-ary monads on A .
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Example: small categories

Example

A small category consists of:

a base quiver morC obC ;
d

c

a total operator id : obC → morC ;

a partial operator ◦ : morC ×morC → morC such that

g ◦ f is defined iff d(g) = c(f)

which satisfy the following:

d(id(x)) = x and c(id(x)) = x;

d(g ◦ f) = d(f) and c(g ◦ f) = c(g) whenever d(g) = c(f);

f ◦ id(d(f)) = f and id(c(f)) ◦ f = f ;

(h ◦ g) ◦ f = h ◦ (g ◦ f) whenever d(h) = c(g) and d(g) = c(f).

Small categories are algebras over quivers.
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Further examples

Example

algebras over ∼
small categories ⇝ quivers
UDO semirings ⇝ posets

partial Boolean algebras ⇝ graphs
monoid-graded rings ⇝ monoid-graded sets

generalized complete metric spaces ⇝ generalized metric spaces
Banach spaces ⇝ pointed metric spaces
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A technical remark

Definition ([PV07])

(κ-ary) partial Horn theory · · · a logical theory based on multi-sorts, partial
functions, relations, and (partial) Horn implications.

Mod S · · · the category of models of a partial Horn theory S.

Theorem ([PV07])

TFAE for a category A :

1 A is locally κ-presentable.

2 A ≃Mod S for some κ-ary partial Horn theory S.

We actually define S-relative algebraic theories for partial Horn theories S.

⇝ A -rel. alg. theory = S-rel. alg. theory where A ≃Mod S.
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Birkhoff’s variety theorem

Birkhoff’s variety theorem [Bir35]

(Ω, E): a single-sorted algebraic theory. E ⊆ Alg(Ω, E): fullsub.
TFAE:

1 E ⊆ Alg(Ω, E) is definable by equations.

2 E ⊆ Alg(Ω, E) is closed under products, subobjects, and quotients.

closed under products: Ai ∈ E =⇒
∏

i Ai ∈ E .

closed under subobjects: B ⊆ A: sub, A ∈ E =⇒ B ∈ E .

closed under quotients: A↠ B: surj, A ∈ E =⇒ B ∈ E .
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A generalized Birkhoff’s theorem

Theorem ([Kaw23; Kaw24])

(Ω, E): an A -relative (κ-ary) algebraic theory. E ⊆ Alg(Ω, E): fullsub.
TFAE:

1 E ⊆ Alg(Ω, E) is definable.

2 E ⊆ Alg(Ω, E) is closed under products, closed subobjects, (U, κ)-pure
quotients, and κ-filtered colimits.

single-sorted alg.
(Set-relative alg.)

A -relative alg.

products ⇝ products
subobjects ⇝ closed subobjects
quotients ⇝ (U, κ)-pure quotients

⇝ κ-filtered colimits (new)
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What are closed subobjects and (U, κ)-pure quotients?

A · · · a locally κ-presentable category
(Ω, E) · · · an A -rel. alg. theory

Alg(Ω, E) U A · · · the forgetful functor

Informal definition
1 A subalg. B ⊆ A in Alg(Ω, E) is closed if:

▶ For every relation R in “the language of A ,”

R(⃗b) holds in UA ⇒ R(⃗b) holds in UB.

2 A
p

B in Alg(Ω, E) is a (U, κ)-pure quotient if:
▶ For every κ-ary formula in “the language of A ,”

φ(⃗b) holds in UB ⇒ ∃a⃗
Up

b⃗ s.t. φ(⃗a) holds in UA.
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Example

Pos · · · the category of posets.

(Ω,∅) · · · a Pos-rel. alg. theory defined by
Ω := {⊖}, x⊖ y is defined iff x ≥ y.

Alg(Ω,∅) U Pos · · · the forgetful functor.

In Alg(Ω,∅), under x⊖ y := x− y in N,
{0 < 2 3} ⊆ {0 < 1 < 2 < · · · } · · · subalgebla, but not closed.
{0 < 2 < 4} ⊆ {0 < 1 < 2 < · · · } · · · closed subalgebla.

0 0

1 1

2

∧

∧

→


0

1

2

∧

∧

 · · · surjection, but not a (U,ℵ0)-pure quotient.



0 0 0 · · ·

1 1 · · ·

2 · · ·

. . .

∧ ∧

∧


→



0

1

2

...

∧

∧

∧


· · · (U,ℵ0)-pure quotient,

but not (U,ℵ1)-pure quotient.
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Filtered colimits are necessary

Example (SetN-relative algebra [ARV12])

E := {1} ∪ {A ∈ SetN | ∃m ∈ N. Am = ∅}.

E ⊆ SetN is closed under...

✓ products
✓ closed subobjects = sort-wise injections
✓ pure quotients = sort-wise surjections
× filtered colimits

A0 := (∅, ∅, ∅, ∅, · · · ) ∈ E

A1 := (2, ∅, ∅, ∅, · · · ) ∈ E

A2 := (2, 2, ∅, ∅, · · · ) ∈ E

...
...

...
...

...

Colim
n∈ω

An = (2, 2, 2, 2, · · · ) /∈ E

∩ ∩ ∩ ∩ ∩

∩ ∩ ∩ ∩ ∩

∩ ∩ ∩ ∩ ∩
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Example (Setω-relative algebra [Kaw25])

Setω · · · the category of sets with countably many constants (cn)n.

E := {1} ∪ {A ∈ Setω | ∃i, j s.t. ci ̸= cj in A}.
E ⊆ Setω is closed under...

✓ products
✓ closed subobjects = subalgebras
✓ pure quotients = surjections that do not merge any constants
× filtered colimits

A0 := {c0, c1, c2, c3, · · · , ∞} ∈ E

A1 := {c0 c1, c2, c3, · · · , ∞} ∈ E

A2 := {c0 c1 c2, c3, · · · , ∞} ∈ E

...
...

...
...

...
...

Colim
n∈ω

An := {c0 c1 c2 c3 · · · , ∞} /∈ E
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The filtered colimit elimination problem

However, filtered colimits are not required for Set-rel. alg. in Birkhoff’s theorem.

Question
Why can filtered colimits be eliminated in the case of Set-relative algebras?

Answer
The category Set satisfies a “noetherian” condition.
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A noetherian condition for categories

Definition ([Kaw25])

A category A satisfies the ascending chain condition (ACC) if it has no chain
A0 → A1 → A2 → · · · of objects such that there is no morphism An ← An+1 for
all n.

Example

Set satisfies ACC.

Proof.
Let A0 → A1 → · · · be an ω-chain of sets.If there is no map A0 ← A1, then
A0 = ∅ and A1 ̸= ∅.Thus, a map A1 ← A2 exists.

More generally,

Proposition

SetS satisfies ACC ⇔ the set S is finite.
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Filtered colimit elimination

Theorem ([Kaw25; Kaw24])

(Ω, E): an A -relative (κ-ary) algebraic theory. E ⊆ Alg(Ω, E): fullsub.
If A satisfies ACC,
TFAE:

1 E ⊆ Alg(Ω, E) is definable.

2 E ⊆ Alg(Ω, E) is closed under products, closed subobjects, (U, κ)-pure
quotients, and κ-filtered colimits.

1/1 19/25



Some applications of filtered colimit elimination

Corollary

Set satisfies ACC.
⇝ fil.colim.elim. holds for single-sorted alg.
⇝ The classical Birkhoff theorem [Bir35]

Setn satisfied ACC.
⇝ fil.colim.elim. holds for finite-sorted alg.
⇝ This subsumes a result in [ARV12].

Pos satisfied ACC.
⇝ fil.colim.elim. holds for ordered alg.
⇝ This subsumes a result in [Blo76].

Met∞, the category of generalized metric spaces, satisfied ACC.
⇝ fil.colim.elim. holds for metric alg.
⇝ This subsumes a result in [Hin16].
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Filtered colimit elimination: sketch of proof

fullsub E ⊆ Alg(Ω, E): closed under products, closed sub, (U, κ)-pure quo.
(AJ)J∈I: a κ-filtered diagram s.t. AJ ∈ E .

For each J ∈ I, we can construct a “nice” wide sub-diagram J ∈ IJ ⊆ I.

∏
I∈I AI

Colim
J∈I

Lim
I∈IJ

AI Colim
J∈I

AJ

Lim
I∈IJ

AI AJ

m

Colim
J∈I

πJ

mJ

πJ

in Alg(Ω, E)

⇝ E ⊆ Alg(Ω, E) is closed under κ-filtered colimits.
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Weak converse

Theorem ([Kaw25])

A : a l.f.p. category. Assume that, for every fullsub. of A , closure under filtered
colimits follows from the others: P(products), S(closed sub), H(ℵ0-pure quo).
Then,

1 The fullsub Afp,c := {finitely presentable connected objs} ⊆ A satisfies ACC.

2 If ∅ ! 1 in A is strongly monic, the fullsub
Afp := {finitely presentable objs} ⊆ A satisfies ACC.

Sketch of proof:
Let A0 → A1 → A2 → · · · in Afp. Consider

E := {X | ∃n. X ∃ An} ⊆ A .

Using finite presentability, its HSP-closure can be computed as

HSP(E ) = S(1) ∪H(E ).

Since An +An ∈ E (∀n), B := Colim
n∈ω

(An +An) ∈ HSP(E ).

The additional conditions ensure that B /∈ S(1). ∴ B ∈ H(E )
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A0 → A1 → A2 → · · · in Afp

E := {X | ∃n. X ∃ An} ⊆ A

B := Colim
n∈ω

(An +An) ∈ H(E )

Thus, we have:

X AN

An An +An B

p
u
re

q
u
o

∈ E

coproj coproj

(∀n ≥ N)

Thus, A0 → A1 → A2 → · · · eventually “stabilizes.”
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Open problems

Open problem 1

Is there any locally presentable category that satisfies filtered colimit elimination
but not ACC?
More precisely, is there any κ-ary partial Horn theory S for some κ that satisfies
the following conditions?

Every full subcategory of Mod S is closed under κ-filtered colimits whenever
it is closed under products, S-closed subobjects, and κ-pure quotients.

The category Mod S does not satisfy ACC.

The next one is weaker than 1 and independent of partial Horn theories:

Open problem 2

Is there any locally finitely presentable category that does not satisfy ACC but
satisfies it for the full subcategory of finitely presentable objects?
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Thank you!

Today’s slides My homepage

1/1 25/25



References I
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[ARV12] J. Adámek, J. Rosický, and E. M. Vitale. “Birkhoff’s variety theorem in many sorts”. In:
Algebra Universalis 68.1-2 (2012), pp. 39–42.
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[Ros21] J. Rosický. “Metric monads”. In: Math. Structures Comput. Sci. 31.5 (2021), pp. 535–552.

[Wea95] N. Weaver. “Quasi-varieties of metric algebras”. In: Algebra Universalis 33.1 (1995), pp. 1–9.

2/2 27/25

https://arxiv.org/abs/1612.06054
https://arxiv.org/abs/2304.04382
https://arxiv.org/abs/2304.04382
https://arxiv.org/abs/2403.19661
https://arxiv.org/abs/2403.19661

	Appendix

