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@ Relativization of universal algebra
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Relativization via monads

Theorem ([Lin69])

There is an equivalence

Here,

Th®: the category of S-sorted equational theories,
Mnd;(Set”): the category of finitary monads on Set®.

Th® ~ Mndg(Set”).

S-sorted equational theory = finitary monad on Set®

1 generalize

o/ -relative algebraic theory = k-ary monad on &/

(7 alocally k-presentable category)
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Relative algebraic theories

Informal definition [Kaw?23]
& a (locally presentable) category
An of-relative algebraic theory consists of:
@ a set ) of partial operators;
@ a set E of implications <-( YYY whenever XXX )

postcondition precondition

such that
@ For each operator w € (2, its domain must be defined by “<7's language.”

@ For each implication in F, its precondition must be written in “&'s
language.”

Set”-relative algebraic theories = S-sorted equational theories J
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A generalized Linton theorem

Theorem ([Kaw23; Kaw?24])

For a locally k-presentable category o7, there is an equivalence
Th? ~ Mnd, ().

Here,

Th: the category of «7-relative (k-ary) algebraic theories,
Mnd(«): the category of k-ary monads on .
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Example: small categories

Example
A small category consists of:
d
@ a base quiver mord —< ob%;
C

@ a total operator id: ob% — mor%’;

@ a partial operator o: mor%é x mor%é — mor% such that
g o f is defined iff d(g) = c(f)
which satisfy the following:
e d(id(z)) = « and c(id(x)) = a;

o d(go f) =d(f) and c(go f) = c(g) whenever d(g) = c(f);
® foid(d(f)) = f andid(c(f)) o f = f;

@ (hog)o f=ho(go f) whenever d(h) =c(g) and d(g) = c(f).

Small categories are algebras over quivers.

J
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Further examples

Example

algebras over ~

small categories
UDO semirings
partial Boolean algebras
monoid-graded rings
generalized complete metric spaces
Banach spaces

A A A

quivers
posets
graphs
monoid-graded sets
generalized metric spaces
pointed metric spaces
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A technical remark

Definition ([PV07])

o (k-ary) partial Horn theory - -- a logical theory based on multi-sorts, partial
functions, relations, and (partial) Horn implications.

@ ModS --- the category of models of a partial Horn theory S.

Theorem ([PV07])
TFAE for a category 7
Q@  is locally k-presentable.
Q@ o ~ ModS for some k-ary partial Horn theory S.

We actually define S-relative algebraic theories for partial Horn theories S.

~~ of-rel. alg. theory = S-rel. alg. theory where &7 ~ ModS.
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© Birkhoff's variety theorem
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Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

(2, E): a single-sorted algebraic theory. & C Alg(Q, E): fullsub.
TFAE:

Q@ & C Alg(Q, E) is definable by equations.

Q@ & C Alg(Q, E) is closed under products, subobjects, and quotients.

closed under products: 4; € & = [[, A; € &.
closed under subobjects: B C A: sub, A€ & =— B € é&.
closed under quotients: A — B: surj, Ac & — B€&.
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A generalized Birkhoff's theorem

Theorem ([Kaw23; Kaw24])

(Q, E): an gf-relative (k-ary) algebraic theory. & C Alg(Q, E): fullsub.
TFAE:

Q & C Alg(Q, F) is definable.
Q@ & C Alg(Q, E) is closed under products, closed subobjects, (U, x)-pure

quotients, and k-filtered colimits.

single-sorted alg.

(Set-relative alg.) /-relative alg.
products > products
subobjects ~ closed subobjects
quotients ~ (U, k)-pure quotients
o d

k-filtered colimits (new)
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What are closed subobjects and (U, k)-pure quotients?

&/ --- alocally k-presentable category
(Q,E) --- an /-rel. alg. theory
Alg(Q, E) Yo - the forgetful functor

Informal definition
Q A subalg. BC Ain Alg(Q), E) is closed if:

For every relation R in “the language of «/,"

= -,

R(b) holds in UA = R(b) holds in UB.

0 A-2Bin Alg(Q, E) is a (U, k)-pure quotient if:

For every k-ary formula in “the language of <7,"

-

Up -
o(b) holds in UB = 3@ L b s.t. (@) holds in UA.

v
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Example

Pos --- the category of posets.
(@, 2) a Pos-rel. alg. theory defined by
’ QN :={6}, zoyis defined iff x > y.
Alg(Q, ) Uy Pos - the forgetful functor.
In Alg(Q2, ), under x Oy :=x —y in N,
e {0<2 3}C{0<1<2<---} --- subalgebla, but not closed.
0 {0<2<4}C{0<1<2<:---} --- closed subalgebla.
0 0 0
N N N .
° 1 1 ¢—798 1 - surjection, but not a (U, Xg)-pure quotient.
AN A
2 2

>0

(U, Rg)-pure quotient,
but not (U, 8;)-pure quotient.

N> >0
1
>SN>—=>0
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Filtered colimits are necessary
Example (Set"-relative algebra [ARV12])

&:= {1}u{AeSet" |ImeN. 4,, = 2}.
& C Set" is closed under...

v/ products

V' closed subobjects = sort-wise injections
v/ pure quotients = sort-wise surjections
X filtered colimits

Ay = (9, @, o, g, ) €&
N N n N n
Ay = (2, @, 9, g, ) €&
N N n N N
Ao = (2, 2 9, g ) €&
N N N N n

ColimA4, = (2, 2, 2, 2 ) ¢&

v
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Example (Set,,-relative algebra [Kaw25])

Set,, - - the category of sets with countably many constants (¢, )n.

&= {1} U{A € Set,, | Fi,j st. ¢; #¢; in A}
& C Set,, is closed under...

products

pure quotients = surjections that do not merge any constants

v
V' closed subobjects = subalgebras
v
X

filtered colimits
Ao = {co, ¢, ¢, c3
! R A
Ay o= {co =c1, 2, c3,
1 L A A
Ay = {co = c1 = eo, cs3,
J T J J J
Colim A, = {co=c1 = co =3 = -

new

€&
€&

€&

¢ &
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The filtered colimit elimination problem

However, filtered colimits are not required for Set-rel. alg. in Birkhoff's theorem.

Why can filtered colimits be eliminated in the case of Set-relative algebras?

Question J

The category Set satisfies a “noetherian” condition.

Answer J
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© Filtered colimit elimination
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A noetherian condition for categories

Definition ([Kaw25])

A category & satisfies the ascending chain condition (ACC) if it has no chain
A9 — Ay — As — -+ of objects such that there is no morphism A, < A,,;1 for
all n.

v

Example
Set satisfies ACC.

Proof.
Let Ag = A; — --- be an w-chain of sets.If there is no map Ay < Aq, then
Ag =@ and Ay # &.Thus, a map A; «+ A, exists. ]

v

More generally,
Proposition J

Set” satisfies ACC < the set S is finite.
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Filtered colimit elimination

Theorem ([Kaw25; Kaw24])

(Q, E): an o/-relative (k-ary) algebraic theory. & C Alg(Q, E): fullsub.
If o7 satisfies ACC,
TFAE:

Q@ & C Alg(Q, E) is definable.

Q@ & C Alg(Q), E) is closed under products, closed subobjects, (U, k)-pure
quotients, and—r—fttered-ecolimits.
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Some applications of filtered colimit elimination

Corollary

o Set satisfies ACC.
~~ fil.colim.elim. holds for single-sorted alg.
~> The classical Birkhoff theorem [Bir35]

@ Set™ satisfied ACC.
~~ fil.colim.elim. holds for finite-sorted alg.
~ This subsumes a result in [ARV12].

o Pos satisfied ACC.
~~ fil.colim.elim. holds for ordered alg.
~ This subsumes a result in [Blo76].

@ Met, the category of generalized metric spaces, satisfied ACC.
~~ fil.colim.elim. holds for metric alg.
~ This subsumes a result in [Hin16].
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Filtered colimit elimination: sketch of proof

fullsub & C Alg(Q, E): closed under products, closed sub, (U, k)-pure quo.
(Ay)jer: a k-filtered diagram s.t. A; € &,

For each J €1, we can construct a “nice” wide sub-diagram J € I; C 1.

HIeI Ar
\. Cohm T
4444444444444444444
my C(])ggn %61%111 AI COhHl A J in A]g(Q E)
Lim A; Ay
Iel, ™

~ & C Alg(Q, E) is closed under k-filtered colimits. O
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Weak converse
Theorem ([Kaw25])

o/ a |.f.p. category. Assume that, for every fullsub. of <, closure under filtered
colimits follows from the others: P(products), S(closed sub), H(RXo-pure quo).

Then,

@ The fullsub <, . := {finitely presentable connected objs} C 7 satisfies ACC.

Q Ifo # 1 in & is strongly monic, the fullsub
<, = {finitely presentable objs} C o7 satisfies ACC.

Sketch of proof:
Let Ag -+ Ay — Ay — -+ in @,. Consider

& ={X|3In. X > A,} Co.
Using finite presentability, its HSP-closure can be computed as
HSP(&) = S(1) UH(&).
Since A, + A, € & (Vn), B := C&]EH(A" + A,) € HSP(&).
The additional conditions ensure that B ¢ S(1). .. BeH(&)
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AQ%A1—>A2—>-~' in,xz%fp

& ={X|In. X DA} Co
B:= Coelim(An +4,) eH(8)

Thus, we have:

€&

X — Ax

onb aind

A A A
n coproj n+ An coproj

Thus, Ag — A1 — Ay — - - eventually “stabilizes.”
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Open problems

Open problem 1

Is there any locally presentable category that satisfies filtered colimit elimination
but not ACC?
More precisely, is there any k-ary partial Horn theory S for some « that satisfies
the following conditions?
@ Every full subcategory of ModS is closed under x-filtered colimits whenever
it is closed under products, S-closed subobjects, and k-pure quotients.

@ The category Mod S does not satisfy ACC.

The next one is weaker than 1 and independent of partial Horn theories:

Open problem 2

Is there any locally finitely presentable category that does not satisfy ACC but
satisfies it for the full subcategory of finitely presentable objects?
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Thank you!
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