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Single-sorted algebras

Definition

A (single-sorted) algebra consists of:

a base set A;

operators σ : An → A (n ≥ 0);

equations.

Example

A group consists of:

a base set G;

operators e : 1→ G, i : G→ G, m : G2 → G;

equations m(e, x) = x = m(x, e), m(x, i(x)) = e = m(i(x), x),
m(m(x, y), z) = m(x,m(y, z)).
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Multi-sorted algebras

Definition

S: a set. (the set of sorts)
An S-sorted algebra consists of:

base sets (As)s∈S indexed by S;

operators σ : As1 × · · · × Asn → As;

equations.

Example

A chain complex consists of:

base sets (An)n∈Z;

operators 0n : 1→ An, −n : An → An, +n : An ×An → An,
dn : An → An+1;

appropriate equations.

This is an Z-sorted algebra.
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The free-forgetful adjunctions

Grp Ch

⊣ ⊣

Set SetZ

U UF F

Alg(Ω, E)

⊣

SetS

UF

( Ω
operators

, E
equations

): an S-sorted algebraic theory.
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Relativization via monads

Theorem ([Lin69])

There is an equivalence
ThS ≃Mndf(Set

S).

Here,

ThS : the category of S-sorted algebraic theories,

Mndf(Set
S): the category of finitary monads on SetS .

S-sorted algebraic theory = finitary monad on SetS

↓ generalize

??? A -relative algebraic theory = κ-ary monad on A
(A : a locally κ-presentable category)
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Relative algebraic theories

Informal definition [Kaw23a]

A : a (locally presentable) category
An A -relative algebraic theory consists of:

a set Ω of partial operators;

a set E of implications · · · ( YYY
postcondition

whenever XXX
precondition

)

such that

For each operator ω ∈ Ω, its domain must be defined by “A ’s language.”

For each implication in E, its precondition must be written in “A ’s
language.”
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A generalized Linton theorem

Theorem ([Kaw23a; Kaw24])

For a locally κ-presentable category A , there is an equivalence

ThA
κ ≃Mndκ(A ).

Here,

ThA
κ : the category of A -relative (κ-ary) algebraic theories,

Mndκ(A ): the category of κ-ary monads on A .

↑ generalize

Recall (Linton’s theorem)

ThS
ℵ0 ≃Mndℵ0(Set

S).
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Example: small categories

Example

A small category consists of:

a base quiver morC obC ;
d

c

a total operator id : obC → morC ;

a partial operator ◦ : morC ×morC → morC such that

g ◦ f is defined iff d(g) = c(f)

which satisfy the following:

d(id(x)) = x and c(id(x)) = x;

d(g ◦ f) = d(f) and c(g ◦ f) = c(g) whenever d(g) = c(f);

f ◦ id(d(f)) = f and id(c(f)) ◦ f = f ;

(h ◦ g) ◦ f = h ◦ (g ◦ f) whenever d(h) = c(g) and d(g) = c(f).

Small categories are algebras over quivers.
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Further examples

Example

algebras over ∼
small categories ⇝ quivers
UDO semirings ⇝ posets

partial Boolean algebras ⇝ graphs
monoid-graded rings ⇝ monoid-graded sets

generalized complete metric spaces ⇝ generalized metric spaces
Banach spaces ⇝ pointed metric spaces
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Equational classes

Definition

(Ω, E): a single-sorted algebraic theory. A full subcategory E ⊆ Alg(Ω, E) is
definable (by equations) if E = Alg(Ω, E + ∃E′), i.e., E can be defined by adding
equations.

Example

{commutative monoids} ⊆Mon is definable by the equation xy = yx.

Example

{invertible monoids} ⊆Mon is not definable by
equations.not definable by equations.

How can we prove this?
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Birkhoff’s variety theorem

Birkhoff’s variety theorem [Bir35]

(Ω, E): a single-sorted algebraic theory. E ⊆ Alg(Ω, E): fullsub.
TFAE:

1 E ⊆ Alg(Ω, E) is definable by equations.

2 E ⊆ Alg(Ω, E) is closed under products, subobjects, and quotients.

closed under products: Ai ∈ E =⇒
∏

i Ai ∈ E .

closed under subobjects: B ⊆ A: sub, A ∈ E =⇒ B ∈ E .

closed under quotients: A↠ B: surj, A ∈ E =⇒ B ∈ E .

Corollary

{invertible monoids} ⊆Mon is not definable by equations.

Proof.

N
¬invertible

⊂ Z
invertible

⇝ {inv. monoids} ⊆Mon: not closed under subobjects

1/1 13/30



A generalized Birkhoff’s theorem

Theorem ([Kaw23a; Kaw24])

(Ω, E): an A -relative (κ-ary) algebraic theory. E ⊆ Alg(Ω, E): fullsub.
TFAE:

1 E ⊆ Alg(Ω, E) is definable.

2 E ⊆ Alg(Ω, E) is closed under products, closed subobjects, (U, κ)-local
retracts, and κ-filtered colimits.

single-sorted alg.
(Set-relative alg.)

A -relative alg.

products ⇝ products
subobjects ⇝ closed subobjects
quotients ⇝ (U, κ)-local retracts

⇝ κ-filtered colimits (new)
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The filtered colimit elimination problem

Question
Why can the closure property under filtered colimits be eliminated in the case of
Set-relative algebras?

Answer
The category Set satisfies a “noetherian” condition.
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A noetherian condition for categories

Definition ([Kaw23b])

A category A satisfies the ascending chain condition (ACC) if it has no chain
A0 → A1 → A2 → · · · of objects such that there is no morphism An ← An+1 for
all n.

Example

Set satisfies ACC.

Proof.
Let A0 → A1 → · · · be an ω-chain of sets.If there is no map A0 ← A1, then
A0 = ∅ and A1 ̸= ∅.Thus, a map A1 ← A2 exists.
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Example

Quiv, the category of quivers, does not satisfy ACC.

Proof.
Let Qn denote the n-path

Qn : 0→ 1→ 2→ · · · → n.

Then, the inclusions yields a chain Q0 → Q1 → Q2 → · · · , and there is no quiver
morphism Qn ← Qn+1.

Example

Ring, the category of rings, does not satisfy ACC.

Proof.
This is because there is a non-trivial chain of finite fields

Fp ↪→ Fp2 ↪→ Fp4 ↪→ · · · ↪→ Fp2n ↪→ · · · .

1/1 18/30



Relation to ordinary ACC

Definition
Objects X and Y are strongly connected if there are morphisms X → Y ,
Y → X.

An equivalence class under strong connectedness is called a strongly
connected component.

σ(A ): the large poset of all strongly connected components in a category A .
(the posetification of A )

CAT ⊥ POS

σ

inclusion

Proposition

A category A satisfies ACC ⇔ the large poset σ(A ) satisfies ACC.
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Proposition

SetS satisfies ACC ⇔ the set S is finite.

Proof.
Since the posetification σ preserves products, the following holds:

σ(SetS) ∼= σ(Set)S ∼= {0 < 1}S ∼= P(S).

“P(S) satisfies ACC ⇔ S: finite” is trivial.
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Filtered colimit elimination

Theorem ([Kaw23b; Kaw24])

(Ω, E): an A -relative (κ-ary) algebraic theory. E ⊆ Alg(Ω, E): fullsub.
Assume that A satisfies ACC.
TFAE:

1 E ⊆ Alg(Ω, E) is definable.

2 E ⊆ Alg(Ω, E) is closed under products, closed subobjects, (U, κ)-local
retracts, and κ-filtered colimits.
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Some applications of filtered colimit elimination

Corollary

Set satisfies ACC.
⇝ fil.colim.elim. holds for single-sorted alg.
⇝ The classical Birkhoff theorem [Bir35]

Setn satisfied ACC.
⇝ fil.colim.elim. holds for finite-sorted alg.
⇝ This subsumes a result in [ARV12].

Pos satisfied ACC.
⇝ fil.colim.elim. holds for ordered alg.
⇝ This subsumes a result in [Blo76].

Met∞, the category of generalized metric spaces, satisfied ACC.
⇝ fil.colim.elim. holds for metric alg.
⇝ This subsumes a result in [Hin16].
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Filtered colimit elimination: sketch of proof

fullsub E ⊆ Alg(Ω, E): closed under products, closed sub, (U, κ)-local ret.
(AJ)J∈I: a κ-filtered diagram s.t. AJ ∈ E .

For each J ∈ I, we can construct a “nice” wide sub-diagram IJ ⊆ I.

∏
I∈I AI

Colim
J∈I

Lim
I∈IJ

AI Colim
J∈I

AJ

Lim
I∈IJ

AI AJ

m

Colim
J∈I

πJ

mJ

πJ

in Alg(Ω, E)

⇝ E ⊆ Alg(Ω, E) is closed under κ-filtered colimits.
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Locally connected categories

Definition

C ∈ C is connected
def⇔ C (C, •) : C → Set preserves small coproducts.

Example
1 A top. space X ∈ Top is connected ⇔ it is connected (in the usual sense).

2 A set X ∈ Set is connected ⇔ it is a singleton.

3 A category C ∈ Cat is connected ⇔ all objects are connected by zig-zags.

4 A presheaf P ∈ SetC op

is connected ⇔ so is the caty of elements
∫
P .

Definition

C is locally connected
def⇔ it has small coproducts and every object is a small

coproduct of connected objects.

Example

Top is not locally connected.

Set, Cat, and any presheaf categories SetC op

are locally connected.
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A characterization of locally connected categories

Definition

Given a category A , we define a category Fam(A ) (the category of families):

object · · · a small family (Ai ∈ A )i∈I ;

morphism (Ai)I → (Bj)J · · · a map I
f

J together with a family

(Ai
fi

Bf(i) in A )i∈I .

Theorem ([CV98])

C is locally connected ⇔ C ≃ Fam(A ) for some A .

C : locally connected ⇝ C ≃ Fam(Cconn)
(Cconn ⊆ C : the fullsub of all connected objects)
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ACC for locally connected categories

Definition

L ⊆ obA is called a lower class
def⇔ “X → Y ∈ L” implies X ∈ L.

L(A ): the (large) poset of lower classes on A .

Lemma ([Kaw23b])

C : locally connected +α ⇝ σ(C ) ∼= L(Cconn) (∼= Lσ(Cconn)).

Proof.

σ(C ) ∼= σ(Fam(Cconn)) ∼= L(Cconn).

Lemma ([Kaw23b])

The poset L(A ) satisfies ACC ⇔ Every lower class on A is finitely generated.

Corollary ([Kaw23b])

A locally connected category C satisfies ACC ⇔ Every lower class on Cconn is
finitely generated.
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Cospan := Set[·→·←·] (presheaf category)
Cospan has only 6 strongly connected components:

S0 :
∅

∅ ∅,
S1 :

1

∅ ∅,
S2 :

1

1 ∅,

S3 :
1

∅ 1,
S4 :

2

1 1,

⌜0⌝ ⌜1⌝ S5 :
1

1 1.

On the other hand,

σ(Cospanconn) =

σ(Cospan) ∼= L(σ(Cospanconn)) is displayed as follows:
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ACC for G-Set

G: a topological group ⇝ G-Set: locally connected

Definition

A ∈ E is called an atom
def⇔ A ̸= 0 and Sub(A) = {0, A}.

(G-Set)conn = {atoms in G-Set} ≃ {open subgroups of G}

Corollary ([Kaw23b])

G: a topological group

1 σ(G-Set) ∼= L(open subgroups of G)

2 G-Set satisfies ACC ⇔ Every lower set of open subgroups of G is finitely
generated.
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Thank you!

Today’s slide My homepage
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κ-filtered colimits

Definition

A small category I is κ-filtered if every (< κ)-small diagram has a cocone in I.

Definition
A κ-filtered colimit is a colimit of a functor from a κ-filtered small category.
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Representing models

Theorem ([Kaw23a; Kaw24])

T: a κ-ary partial Horn theory
For every T-model M , we have:

J~x.ϕKM ∼= PModT(⟨~x.ϕ⟩T,M).

Definition
An object A ∈ A is κ-presentable if its Hom-functor

A (A,−) : A → Set

preserves κ-filtered colimits.

Theorem ([Kaw23a; Kaw24])

T: a κ-ary partial Horn theory
TFAE for a T-model M ∈ PModT:

1 M is κ-presentable.

2 There exists a κ-ary Horn formula ~x.ϕ s.t. M ∼= ⟨~x.ϕ⟩T.
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Example: UDO semirings

Example ([Gol03])

A uniquely difference-ordered semiring consists of:

a base poset (R,≤);
total operators +, · : R×R→ R;

constants 0, 1 ∈ R;

a partial operator ⊖ : R×R ⇀ R such that

b⊖ a is defined iff a ≤ b

which satisfy the following:

(R,+, ·, 0, 1) is a semiring;

a ≤ a+ b;

(a+ b)⊖ a = b;

a+ (b⊖ a) = b whenever a ≤ b.

UDO semirings are algebras over posets.
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Example: partial abelian groups

Example ([BH12])

A partial abelian group consists of:

a base set A with a reflexive symmetric relation ⊙ ⊆ A×A; (a set with
commeasurability)

a constant 0 ∈ A;

a total operator − : A→ A;

a partial operator +: A×A ⇀ A such that

a+ b is defined iff a⊙ b

which satisfy the following:

a⊙ 0;

a⊙ (−b) whenever a⊙ b;

a⊙ (b+ c) whenever a⊙ b, b⊙ c, c⊙ a;

(a+ b) + c = a+ (b+ c) whenever a⊙ b, b⊙ c, c⊙ a;

a+ b = b+ a whenever a⊙ b;

a+ 0 = a and a⊙ (−a) = 0.

1/1 36/30



Definition

A monoid-graded set is a map d: X →M from a set X to a monoid (M, ·, e).

Example

A monoid-graded ring consists of:

a base monoid-graded set (X, d,M, ·, e);
a constant 1 ∈ X;

total operators ⊗ : X ×X → X, 0: M → X, − : X → X;

a partial operator +: X ×X ⇀ X s.t. x+ y is defined iff d(x) = d(y)

which satisfy the following:

d(1) = e, d(x⊗ y) = d(x)d(y), d(0(a)) = a, d(−x) = d(x);

d(x+ y) = d(x) whenever d(x) = d(y);

(x⊗ y)⊗ z = x⊗ (y ⊗ z), 1⊗ x = x = x⊗ 1;

x+ 0(d(x)) = x, x+ (−x) = 0(d(x));

(x+ y) + z = x+ (y + z) whenever d(x) = d(y) = d(z);

x+ y = y + x whenever d(x) = d(y);

(x+ y)⊗ z = x⊗ z + y ⊗ z and z ⊗ (x+ y) = z ⊗ x+ z ⊗ y whenever
d(x) = d(y).
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Closed monomorphisms

Definition ([Kaw23a; Kaw24])

Let T be a κ-ary partial Horn theory over an S-sorted κ-ary signature Σ.

1 A monomorphism A ↪→ B in PModT is called T-closed (or Σ-closed) if the
following diagrams form pullback squares for any f,R ∈ Σ.

Dom(JfKA) ∏
i<α Asi

Dom(JfKB) ∏
i<α Bsi

⌟
JRKA ∏

i<α Asi

JRKB ∏
i<α Bsi

⌟

2 A morphism h : A→ B in PModT is called T-dense (or Σ-dense) if h
factors through no T-closed proper subobject of B.
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Local retracts

Definition ([Kaw23b; Kaw24])

A morphism p : X → Y in a category A is called a κ-local retraction if for every
κ-presentable object Γ ∈ A and every morphism f : Γ→ Y , there exists a
morphism g : Γ→ X such that p ◦ g = f .

X

Γ Y

p
∃g

f

A κ-local retraction is also called a κ-pure quotient in [AR04].

Definition ([Kaw23b; Kaw24])

Let U : A → C be a functor. A morphism p in A is called a (U, κ)-local
retraction if Up is a κ-local retraction in C .
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The ascending chain condition for categories

Example ([Kaw23b])
1 Set, Pos, and Ab satisfy ACC.

2 Ring and Lat0,1 do not satisfy ACC.

3 SetS satisfies ACC ⇔ S is finite. (S: a set)

4 S/Set satisfies ACC ⇔ S is finite. (S: a set)

5 Set→ satisfies ACC.

6 Set· · does not satisfy ACC.

7 Setω satisfies ACC.

8 Setωop

does not satisfy ACC.

9 The category URel of sets with a unary relation satisfies ACC.

10 The category BRel of sets with a binary relation does not satisfy ACC.
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