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© Relativization of universal algebra
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Single-sorted algebras

Definition

A (single-sorted) algebra consists of:
@ a base set A;
@ operators o: A" — A (n > 0);

@ equations.

Example
A group consists of:
@ a base set G
@ operatorse: 1 - G, i:G—=G, m:G?>—G;
@ equations m(e,x) = x = m(x,e), m(z,i(x)) =e =m(i(z),z),
m(m(z,y), z) = m(z, m(y, z)).
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Multi-sorted algebras

Definition
S: a set. (the set of sorts)
An S-sorted algebra consists of:
@ base sets (Ag)ses indexed by S;
@ operators o: A, X --- X A — As;

@ equations.

Example
A chain complex consists of:
@ base sets (A, )nez;

@ operators 0,,: 1 > A,,, —pn: A, — A, +n: A, XA, = A,
dpn: Ap = Apia;

@ appropriate equations.

This is an Z-sorted algebra.
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The free-forgetful adjunctions

Grp Ch
F <—|> U F (—|> U
Set Set?
Alg(Q, E)
; ( %> .
Set®

Q , _E ) an S-sorted algebraic theory.

operators equations
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Relativization via monads

Theorem ([Lin69])

There is an equivalence

Here,

Th®: the category of S-sorted algebraic theories,
Mnd;(Set”): the category of finitary monads on Set”.

Th® ~ Mnd;(Set®).

S-sorted algebraic theory = finitary monad on Set”

77

J generalize

o/ -relative algebraic theory = k-ary monad on &/
(7 a locally k-presentable category)
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Relative algebraic theories

Informal definition [Kaw23a]

& a (locally presentable) category
An of -relative algebraic theory consists of:

@ a set ) of partial operators;
@ a set E of implications «-( YYY whenever XXX )

postcondition precondition

such that

@ For each operator w € (2, its domain must be defined by “</'s language.’

@ For each implication in FE, its precondition must be written in “<7’s
language.”
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A generalized Linton theorem

Theorem ([Kaw23a; Kaw?24])

For a locally k-presentable category <7, there is an equivalence
Th? ~ Mnd, ().

Here,

Th: the category of «-relative (k-ary) algebraic theories,
Mnd,(«7): the category of k-ary monads on 7.

1 generalize

Recall (Linton's theorem)

Thy ~ Mndy, (Set”).
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Example: small categories

Example
A small category consists of:
d
@ a base quiver mor4 — < ob%;
C

@ a total operator id: 0b% — mor%’;

@ a partial operator o: mor%é x mor%é — mor% such that
g o [ is defined iff d(g) = c(f)
which satisfy the following:
e d(id(x)) = z and c¢(id(x)) = ;

@ d(go f) =d(f) and c(g o f) = c(g) whenever d(g) = c(f);
e foid(d(f)) = f and id(c(f)) o f = f;

@ (hog)o f=ho(go ) whenever d(h) = c(g) and d(g) = c(f).

Small categories are algebras over quivers.

J
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Further examples

Example

algebras over ~

small categories
UDO semirings
partial Boolean algebras
monoid-graded rings
generalized complete metric spaces
Banach spaces

$8 88 e

quivers
posets
graphs
monoid-graded sets
generalized metric spaces
pointed metric spaces
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© Birkhoff's variety theorem
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Equational classes

Definition
(Q, E): a single-sorted algebraic theory. A full subcategory & C Alg(Q, E) is

definable (by equations) if & = Alg(Q, E +7E'), i.e., & can be defined by adding
equations.

v

Example

{commutative monoids} C Mon is definable by the equation zy = yx.

Example

{invertible monoids} C Mon is not definable by
equations.not definable by equations.
How can we prove this?
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Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

(Q, E): a single-sorted algebraic theory. & C Alg(Q, E): fullsub.
TFAE:

Q@ & C Alg(Q, E) is definable by equations.

Q@ & C Alg(Q, E) is closed under products, subobjects, and quotients.

closed under products: A; € & = [], 4; € &.
closed under subobjects: B C A: sub, A€ & = Be€é&.
closed under quotients: A — B: surj, Ac¢ & — Be€é&.

Corollary

{invertible monoids} C Mon is not definable by equations.

Proof.

N c _Z ~> {inv. monoids} C Mon: not closed under subobjects

—invertible invertible

O

v
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A generalized Birkhoff's theorem

Theorem ([Kaw23a; Kaw?24])

(2, E): an «7-relative (k-ary) algebraic theory. & C Alg(Q2, E): fullsub.
TFAE:

Q@ & C Alg(Q, E) is definable.
Q@ & C Alg(Q, E) is closed under products, closed subobjects, (U, x)-local

retracts, and k-filtered colimits.

single-sorted alg.

(Set-relative alg.) /-relative alg.

products ~ products
subobjects ~ closed subobjects
quotients ~ (U, k)-local retracts
VNS

k-filtered colimits (new)
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The filtered colimit elimination problem

Question

Why can the closure property under filtered colimits be eliminated in the case of
Set-relative algebras?

Answer

The category Set satisfies a “noetherian” condition.
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© Filtered colimit elimination
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A noetherian condition for categories

Definition ([Kaw23b])

A category & satisfies the ascending chain condition (ACC) if it has no chain
Ag — Ay — Ay — -+ of objects such that there is no morphism A, + A, 11 for
all n.

Example
Set satisfies ACC.

Proof.

Let Ag =+ A; — --- be an w-chain of sets.If there is no map Ay < A1, then
Ag =@ and Ay # &.Thus, a map A; «+ A, exists. ]

v
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Example
Quiv, the category of quivers, does not satisfy ACC.

Proof.
Let @, denote the n-path

Qn: 0—-1—>2—>.--—n.

Then, the inclusions yields a chain Qg — Q1 — @2 — - - -, and there is no quiver
morphism @Q,, < Q1. ]
Example

Ring, the category of rings, does not satisfy ACC.

Proof.

This is because there is a non-trivial chain of finite fields

Fp o Fpe o Fpe oo o Fpon -0

O
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Relation to ordinary ACC

Definition
@ Objects X and Y are strongly connected if there are morphisms X — Y/,
Y - X.

@ An equivalence class under strong connectedness is called a strongly
connected component.

o o(«): the large poset of all strongly connected components in a category <.
(the posetification of <)

o

/_\
CAT L POS

\/

inclusion

Proposition
A category < satisfies ACC <& the large poset o (/) satisfies ACC.
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Proposition

Set” satisfies ACC < the set S is finite. )

Proof.

Since the posetification o preserves products, the following holds:

o(Set¥) = o(Set)® = {0 < 1} = 2(S).

“P(S) satisfies ACC < S: finite” is trivial. OJ
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Filtered colimit elimination

Theorem ([Kaw23b; Kaw?24])

(Q, E): an o/-relative (k-ary) algebraic theory. & C Alg(Q), E): fullsub.
Assume that &7 satisfies ACC.
TFAE:

Q@ & C Alg(Q, E) is definable.
Q@ & C Alg(Q, E) is closed under products, closed subobjects, (U, x)-local

retracts, and-~-filtered-colimits.
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Some applications of filtered colimit elimination

Corollary

o Set satisfies ACC.
~~ fil.colim.elim. holds for single-sorted alg.
~ The classical Birkhoff theorem [Bir35]

o Set" satisfied ACC.
~ fil.colim.elim. holds for finite-sorted alg.
~> This subsumes a result in [ARV12].

@ Pos satisfied ACC.
~ fil.colim.elim. holds for ordered alg.
~ This subsumes a result in [Blo76].

@ Met, the category of generalized metric spaces, satisfied ACC.

~ fil.colim.elim. holds for metric alg.
~» This subsumes a result in [Hin16].
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Filtered colimit elimination: sketch of proof

fullsub & C Alg(, E): closed under products, closed sub, (U, k)-local ret.
(A))jer: a k-filtered diagram s.t. A; € &.

For each J € T, we can construct a “nice” wide sub-diagram 1; C I

Hlel A
x<~\\\\\\\\\\\\\\\) (jf?l§f11 .
"y Cf})&n Ifen{,l A ——mMmM8M C?lel%ll Ay in Alg(Q, E)
- = v
~ & C Alg(Q, E) is closed under k-filtered colimits. O
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@ Computation of strongly connected components
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Locally connected categories
Definition

C € € is connected & € (C,e): € — Set preserves small coproducts.

Example
@ A top. space X € Top is connected < it is connected (in the usual sense).
@ Aset X € Set is connected <& it is a singleton.
© A category ¥ € Cat is connected < all objects are connected by zig-zags.
Q@ A presheaf P € Set®” is connected < so is the caty of elements | P.

Definition

. def . .
% is locally connected & it has small coproducts and every object is a small
coproduct of connected objects.

Example
@ Top is not locally connected.

@ Set, Cat, and any presheaf categories Set®” are locally connected.
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A characterization of locally connected categories

Definition
Given a category <7, we define a category Fam(.</) (the category of families):
@ object --- a small family (A; € &);er;

e morphism (A;); — (Bj)s --- amap I i) J together with a family

(Az L) Bf(z) in JZ{)ZEI

Theorem ([CV98])

% is locally connected < % ~ Fam(</) for some <.

%" locally connected ~» % ~ Fam(%conn)
(Geonn C €: the fullsub of all connected objects)
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ACC for locally connected categories

Definition
o L C obs is called a lower class & «x sver implies X € L.
o IL(«7): the (large) poset of lower classes on <.

Lemma ([Kaw23b])
% locally connected +a ~» (%) 2 L(Geonn) (= Lo (Geonn))-

Proof.

IR

0(€) = o(Fam(eonn))

L(%onn)- O

Lemma ([Kaw23b])

The poset L(«/) satisfies ACC < Every lower class on & is finitely generated.

Corollary ([Kaw23b])

A locally connected category ¢ satisfies ACC < Every lower class on @ony, is
finitely generated.

7]




Cospan := Set! > (presheaf category)
Cospan has only 6 strongly connected components:
%) 1 1
So: a x S1t o x Se: A K
@ @, @ @, 1 @,
1 o7 2 1
S3t a x Syt LT S5 4k
1% 1, 1 1, 1 1
On the other hand, S »T;D
T\l
L ] Y
— AT e
U(Cospanconn) - 521(7/9‘ Sii:‘\g\ /)

o(Cospan) = L(o(Cospan,,,,)) is displayed as follows:

Ss 155
\ U
Sy 1S, 54}
Sy Sy - 15> 153
AN L D C
Sy
\Y

18
U
So 2]
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ACC for G-Set

G a topological group ~~ G-Set: locally connected
Definition

A€ & is called an atom % A £ 0 and Sub(4) = {0, A}.

(G-Set)conn = {atoms in G-Set} ~ {open subgroups of G'}

Corollary ([Kaw23b])
G: a topological group
Q 0(G-Set) = L(open subgroups of G)

@ G-Set satisfies ACC < Every lower set of open subgroups of G is finitely
generated.
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Thank you!

My homepage

Today's slide
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k-filtered colimits

A small category I is x-filtered if every (< x)-small diagram has a cocone in 1.

Definition J

Definition J

A k-filtered colimit is a colimit of a functor from a k-filtered small category.
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Representing models

Theorem ([Kaw23a; Kaw24))

T: a k-ary partial Horn theory
For every T-model M, we have:

[Z.¢] 5 = PMod T((Z.), M).

Definition
An object A € & is k-presentable if its Hom-functor

(A, —): o — Set

preserves r-filtered colimits.

Theorem ([Kaw23a; Kaw24])

T: a k-ary partial Horn theory
TFAE for a T-model M € PModT:

@ M is k-presentable.

@ There exists a x-ary Horn formula Z.¢ s.t. M = (Z.¢) .

v
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Example: UDO semirings
Example ([Gol03])

A uniquely difference-ordered semiring consists of:
@ a base poset (R, <);
@ total operators +,-: R X R — R;
@ constants 0,1 € R;
@ a partial operator ©: R x R — R such that

bOS ais defined iff a < b

which satisfy the following:
@ (R,+,-,0,1) is a semiring;
@ a<a-+b;
® (a+b)oa=y;
@ a+ (b© a) = b whenever a < b.

UDO semirings are algebras over posets.

J
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Example: partial abelian groups
Example ([BH12])

A partial abelian group consists of:

@ a base set A with a reflexive symmetric relation ® C A x A; (a set with
commeasurability)

@ a constant 0 € A;

@ a total operator —: A — A;

@ a partial operator +: A x A — A such that

a+ b is defined iff a © b

which satisfy the following:

e a®0;

@ a© (—b) whenever a ® b;

@ a© (b+c) whenever a®b, bO ¢, cO q;

@ (a+b)+c=a+ (b+c) whenevera®b, bO ¢, c©® a;

@ a+b=>b-+ a whenever a ® b;

@a+0=aanda®(—a)=0.

v

1/1 36/30



Definition
A monoid-graded set is a map d: X — M from a set X to a monoid (M, -, e).

v

Example
A monoid-graded ring consists of:
@ a base monoid-graded set (X,d, M, -, e);
@ a constant 1 € X;
o total operators ®: X x X - X, 0: M —- X, —: X — X,
@ a partial operator +: X x X — X s.t. @ + y is defined iff d(z) = d(y)
which satisfy the following:
o d(1)=¢, dz®y)=d(z)d(y), d(0(a))=a, d(—z)=d(z);
o d(z+y) = d(x) whenever d(x) = d(y);
o (z2RYRz=zR (YR2), l1r=cr=z81;
o z+0(d(x)) =z, x4+ (—z)=0(d(z));
o (r+y)+z=ux+(y+ z) whenever d(z) = d(y) = d(2);
e = +y =y + x whenever d(z) = d(y);

o (z4+yYy®z=zRz+yRzand z® (x +y) = 2® x + z ® y whenever
d(z) = d(y)-
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Closed monomorphisms

Definition ([Kaw23a; Kaw24])

Let T be a k-ary partial Horn theory over an S-sorted k-ary signature 3.

@ A monomorphism A < B in PMod T is called T-closed (or ¥-closed) if the
following diagrams form pullback squares for any f, R € X.

Dom([f]4) — [Lica 4s: [Rla — [lica 4s:
Dom([[f]]B) — Hi<a B, [[R]]B — H¢<a Bs,

@ A morphism h: A — B in PModT is called T-dense (or 3-dense) if h
factors through no T-closed proper subobject of B.
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Local retracts

Definition ([Kaw23b; Kaw24])

A morphism p: X — Y in a category < is called a r-local retraction if for every
k-presentable object I' € &/ and every morphism f: I' — Y, there exists a
morphism ¢g: I' — X such that pog = f.

LLl
Q
N
\
X
<

¢
f

A k-local retraction is also called a k-pure quotient in [AR04].

Definition ([Kaw23b; Kaw24])

Let U: &/ — € be a functor. A morphism p in &7 is called a (U, )-local
retraction if Up is a k-local retraction in €.
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The ascending chain condition for categories

Example ([Kaw23b])
@ Set, Pos, and Ab satisfy ACC.
@ Ring and Latg ; do not satisfy ACC.
Q Set® satisfies ACC < S is finite. (S: a set)
@ S5/Set satisfies ACC < S is finite. (S: a set)
© Set™ satisfies ACC.
O Set” = " does not satisfy ACC.
@ Set® satisfies ACC.
O Set®” does not satisfy ACC.
@ The category URel of sets with a unary relation satisfies ACC.

@ The category BRel of sets with a binary relation does not satisfy ACC.
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