Universal algebra over locally presentable categories

Yuto Kawase

RIMS, Kyoto University

March 1, 2024.

4 Computation of strongly connected components

Single-sorted algebras

Definition

A (single-sorted) algebra consists of:

- a base set A;
- operators $\sigma \colon A^n \to A \ (n \ge 0);$
- equations.

Example

A group consists of:

- a base set G;
- operators $e \colon 1 \to G$, $i \colon G \to G$, $m \colon G^2 \to G$;
- \bullet equations $m(e,x)=x=m(x,e), \quad m(x,i(x))=e=m(i(x),x), \quad m(m(x,y),z)=m(x,m(y,z)).$

Multi-sorted algebras

Definition

S: a set. (the set of sorts) An <u>S</u>-sorted algebra consists of:

- base sets $(A_s)_{s\in S}$ indexed by S;
- operators $\sigma: A_{s_1} \times \cdots \times A_{s_n} \to A_s$;
- equations.

Example

A chain complex consists of:

- base sets $(A_n)_{n\in\mathbb{Z}}$;
- operators $0_n: 1 \to A_n$, $-_n: A_n \to A_n$, $+_n: A_n \times A_n \to A_n$, $d_n: A_n \to A_{n+1}$;
- appropriate equations.

This is an \mathbb{Z} -sorted algebra.

The free-forgetful adjunctions

 $\mathbf{Alg}(\Omega, E) \\ F\left(\dashv \right) U \\ \mathbf{Set}^{S}$

 $(\underline{\Omega}, \underline{E})$; an S-sorted algebraic theory.

Relativization via monads

Theorem ([Lin69])

There is an equivalence

$$\mathbf{Th}^{S} \simeq \mathbf{Mnd}_{\mathrm{f}}(\mathbf{Set}^{S}).$$

Here,

 \mathbf{Th}^{S} : the category of S-sorted algebraic theories, $\mathbf{Mnd}_{f}(\mathbf{Set}^{S})$: the category of finitary monads on \mathbf{Set}^{S} .

S-sorted algebraic theory = finitary monad on \mathbf{Set}^S

 $\downarrow \mathsf{generalize}$

??? \mathscr{A} -relative algebraic theory = κ -ary monad on \mathscr{A} (\mathscr{A} : a locally κ -presentable category)

Relative algebraic theories

• For each implication in E, its precondition must be written in " \mathscr{A} 's language."

A generalized Linton theorem

Theorem ([Kaw23a; Kaw24])

For a locally $\kappa\text{-presentable}$ category $\mathscr{A},$ there is an equivalence

 $\mathbf{Th}_{\kappa}^{\mathscr{A}}\simeq\mathbf{Mnd}_{\kappa}(\mathscr{A}).$

Here,

 $\mathbf{Th}_{\kappa}^{\mathscr{A}}: \text{ the category of } \mathscr{A}\text{-relative } (\kappa\text{-ary}) \text{ algebraic theories,} \\ \mathbf{Mnd}_{\kappa}(\mathscr{A}): \text{ the category of } \kappa\text{-ary monads on } \mathscr{A}.$

\uparrow generalize

Recall (Linton's theorem)

$$\mathbf{Th}_{\aleph_0}^S \simeq \mathbf{Mnd}_{\aleph_0}(\mathbf{Set}^S).$$

Example: small categories

Example

A small category consists of:

• a base quiver
$$\operatorname{mor} \mathscr{C} \xrightarrow[]{d}{\operatorname{c}} \operatorname{ob} \mathscr{C};$$

- a total operator $\operatorname{id} : \operatorname{ob} \mathscr{C} \to \operatorname{mor} \mathscr{C};$
- \bullet a partial operator $\circ \colon \mathrm{mor} \mathscr{C} \times \mathrm{mor} \mathscr{C} \to \mathrm{mor} \mathscr{C}$ such that

 $g \circ f$ is defined iff d(g) = c(f)

which satisfy the following:

•
$$d(id(x)) = x$$
 and $c(id(x)) = x$;

- $d(g \circ f) = d(f)$ and $c(g \circ f) = c(g)$ whenever d(g) = c(f);
- $f \circ id(d(f)) = f$ and $id(c(f)) \circ f = f$;
- $(h \circ g) \circ f = h \circ (g \circ f)$ whenever d(h) = c(g) and d(g) = c(f).

Small categories are algebras over quivers.

Further examples

Example

		algebras over \sim
small categories	\rightsquigarrow	quivers
UDO semirings	\rightsquigarrow	posets
partial Boolean algebras	\rightsquigarrow	graphs
monoid-graded rings	\rightsquigarrow	monoid-graded sets
generalized complete metric spaces	\rightsquigarrow	generalized metric spaces
Banach spaces	\rightsquigarrow	pointed metric spaces

3) Filtered colimit elimination

Equational classes

Definition

 (Ω, E) : a single-sorted algebraic theory. A full subcategory $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is definable (by equations) if $\mathscr{E} = \mathbf{Alg}(\Omega, E + {}^{\exists}E')$, i.e., \mathscr{E} can be defined by adding equations.

Example

 $\{\text{commutative monoids}\} \subseteq \mathbf{Mon} \text{ is definable by the equation } xy = yx.$

Example

 $\{ invertible monoids \} \subseteq \mathbf{Mon} \text{ is not definable by } equations. not definable by equations. }$

How can we prove this?

Birkhoff's variety theorem

Birkhoff's variety theorem [Bir35]

 (Ω, E) : a single-sorted algebraic theory. $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$: fullsub. TFAE:

- $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is definable by equations.
- **2** $\mathscr{E} \subseteq \operatorname{Alg}(\Omega, E)$ is closed under products, subobjects, and quotients.

closed under products: $A_i \in \mathscr{E} \implies \prod_i A_i \in \mathscr{E}$. closed under subobjects: $B \subseteq A$: sub, $A \in \mathscr{E} \implies B \in \mathscr{E}$. closed under quotients: $A \rightarrow B$: surj. $A \in \mathscr{E} \implies B \in \mathscr{E}$.

Corollary

{invertible monoids} \subset **Mon** is not definable by equations.

Proof.

 $\mathbb{N} \subset \mathbb{Z} \longrightarrow \{\text{inv. monoids}\} \subseteq \mathbf{Mon}:$ not closed under subobjects invertible

A generalized Birkhoff's theorem

Theorem ([Kaw23a; Kaw24])

 (Ω, E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$: fullsub. TFAE:

- $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is definable.
- 𝔅 ⊆ Alg(Ω, E) is closed under products, closed subobjects, (U, κ)-local retracts, and κ-filtered colimits.

single-sorted alg. (Set-relative alg.)		\mathscr{A} -relative alg.	
products	\rightsquigarrow	products	
subobjects	\rightsquigarrow	closed subobjects	
quotients	\rightsquigarrow	(U,κ) -local retracts	
	\rightsquigarrow	κ -filtered colimits (new)	

The filtered colimit elimination problem

Question

Why can the closure property under filtered colimits be eliminated in the case of **Set**-relative algebras?

Answer

The category Set satisfies a "noetherian" condition.

Filtered colimit elimination

A noetherian condition for categories

Definition ([Kaw23b])

A category \mathscr{A} satisfies the ascending chain condition (ACC) if it has no chain $A_0 \to A_1 \to A_2 \to \cdots$ of objects such that there is no morphism $A_n \leftarrow A_{n+1}$ for all n.

Example

Set satisfies ACC.

Proof.

Let $A_0 \to A_1 \to \cdots$ be an ω -chain of sets. If there is no map $A_0 \leftarrow A_1$, then $A_0 = \emptyset$ and $A_1 \neq \emptyset$. Thus, a map $A_1 \leftarrow A_2$ exists.

Example

 $\mathbf{Quiv},$ the category of quivers, does not satisfy ACC.

Proof.

Let Q_n denote the n-path

$$Q_n: \quad 0 \to 1 \to 2 \to \dots \to n.$$

Then, the inclusions yields a chain $Q_0 \to Q_1 \to Q_2 \to \cdots$, and there is no quiver morphism $Q_n \leftarrow Q_{n+1}$.

Example

Ring, the category of rings, does not satisfy ACC.

Proof.

This is because there is a non-trivial chain of finite fields

$$\mathbb{F}_p \hookrightarrow \mathbb{F}_{p^2} \hookrightarrow \mathbb{F}_{p^4} \hookrightarrow \cdots \hookrightarrow \mathbb{F}_{p^{2^n}} \hookrightarrow \cdots.$$

Relation to ordinary ACC

Definition

- Objects X and Y are strongly connected if there are morphisms $X \to Y$, $Y \to X$.
- An equivalence class under strong connectedness is called a strongly connected component.
- σ(𝔄): the large poset of all strongly connected components in a category 𝔄. (the posetification of 𝔄)

Proposition

A category \mathscr{A} satisfies ACC \Leftrightarrow the large poset $\sigma(\mathscr{A})$ satisfies ACC.

Proposition

 \mathbf{Set}^S satisfies ACC \Leftrightarrow the set S is finite.

Proof.

Since the posetification σ preserves products, the following holds:

$$\sigma(\mathbf{Set}^S) \cong \sigma(\mathbf{Set})^S \cong \{0 < 1\}^S \cong \mathscr{P}(S).$$

" $\mathscr{P}(S)$ satisfies ACC $\Leftrightarrow S$: finite" is trivial.

Filtered colimit elimination

Theorem ([Kaw23b; Kaw24])

 (Ω, E) : an \mathscr{A} -relative (κ -ary) algebraic theory. $\mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$: fullsub. Assume that \mathscr{A} satisfies ACC. TFAE:

 $\rega & \mathcal{E} \subseteq \mathbf{Alg}(\Omega, E) \text{ is closed under } \underline{\mathsf{products}}, \ \underline{\mathsf{closed subobjects}}, \ \underline{(U, \kappa)-\mathsf{local}} \\ \underline{\mathsf{retracts}}, \ \underline{\mathsf{and}} \ \underline{\kappa}-\mathsf{filtered colimits}.$

Some applications of filtered colimit elimination

Corollary

- Set satisfies ACC.
 - \rightsquigarrow fil.colim.elim. holds for single-sorted alg.
 - \rightsquigarrow The classical Birkhoff theorem [Bir35]
- **Set**ⁿ satisfied ACC.
 - \rightsquigarrow fil.colim.elim. holds for finite-sorted alg.
 - \rightsquigarrow This subsumes a result in [ARV12].
- Pos satisfied ACC.
 - \rightsquigarrow fil.colim.elim. holds for ordered alg.
 - \rightsquigarrow This subsumes a result in [Blo76].
- Met_∞, the category of generalized metric spaces, satisfied ACC.
 →→ fil.colim.elim. holds for metric alg.
 - \rightsquigarrow This subsumes a result in [Hin16].

Filtered colimit elimination: sketch of proof

fullsub $\mathscr{E} \subseteq \operatorname{Alg}(\Omega, E)$: closed under products, closed sub, (U, κ) -local ret. $(A_J)_{J \in \mathbb{I}}$: a κ -filtered diagram s.t. $A_J \in \mathscr{E}$.

For each $J \in \mathbb{I}$, we can construct a "nice" wide sub-diagram $\mathbb{I}_J \subseteq \mathbb{I}$.

 $\rightsquigarrow \mathscr{E} \subseteq \mathbf{Alg}(\Omega, E)$ is closed under κ -filtered colimits.

Computation of strongly connected components

Locally connected categories

Definition

 $C\in \mathscr{C} \text{ is connected } \stackrel{\mathrm{def}}{\Leftrightarrow} \ \mathscr{C}(C, \bullet) \colon \mathscr{C} \to \mathbf{Set} \text{ preserves small coproducts.}$

Example

- A top. space $X \in \mathbf{Top}$ is connected \Leftrightarrow it is connected (in the usual sense).
- **2** A set $X \in \mathbf{Set}$ is connected \Leftrightarrow it is a singleton.
- $\textbf{ 0} \ \ \mathsf{A} \ \mathsf{category} \ \ \mathscr{C} \in \mathbf{Cat} \ \ \mathsf{is \ connected} \ \ \Leftrightarrow \ \ \mathsf{all \ objects \ are \ connected \ by \ zig-zags. }$
- A presheaf $P \in \mathbf{Set}^{\mathscr{C}^{\mathrm{op}}}$ is connected \Leftrightarrow so is the caty of elements $\int P$.

Definition

 $\label{eq:connected} \overset{\text{def}}{\Leftrightarrow} \text{ it has small coproducts and every object is a small coproduct of connected objects.}$

Example

- Top is not locally connected.
- $\bullet~{\bf Set},~{\bf Cat},~{\rm and}~{\rm any}~{\rm presheaf}~{\rm categories}~{\bf Set}^{{\mathscr C}^{\rm op}}$ are locally connected.

A characterization of locally connected categories

Definition

Given a category \mathscr{A} , we define a category $\mathbf{Fam}(\mathscr{A})$ (the category of families):

• object \cdots a small family $(A_i \in \mathscr{A})_{i \in I}$;

• morphism
$$(A_i)_I \to (B_j)_J \cdots$$
 a map $I \xrightarrow{f} J$ together with a family $(A_i \xrightarrow{f_i} B_{f(i)} \text{ in } \mathscr{A})_{i \in I}.$

Theorem ([CV98])

 $\mathscr{C} \text{ is locally connected } \Leftrightarrow \ \mathscr{C} \simeq \mathbf{Fam}(\mathscr{A}) \text{ for some } \mathscr{A}.$

$$\begin{split} \mathscr{C}: \text{ locally connected } & \rightsquigarrow & \mathscr{C} \simeq \mathbf{Fam}(\mathscr{C}_{\mathrm{conn}}) \\ & & (\mathscr{C}_{\mathrm{conn}} \subseteq \mathscr{C}: \text{ the fullsub of all connected objects}) \end{split}$$

ACC for locally connected categories

Definition

- $L \subseteq ob\mathscr{A}$ is called a lower class $\stackrel{\text{def}}{\Leftrightarrow}$ " $X \to Y \in L$ " implies $X \in L$.
- $\mathbb{L}(\mathscr{A})$: the (large) poset of lower classes on \mathscr{A} .

Lemma ([Kaw23b])

 $\mathscr{C}: \text{ locally connected } + \alpha \quad \rightsquigarrow \quad \sigma(\mathscr{C}) \cong \mathbb{L}(\mathscr{C}_{\text{conn}}) \text{ (}\cong \mathbb{L}\sigma(\mathscr{C}_{\text{conn}})\text{)}.$

Proof.

$$\sigma(\mathscr{C}) \cong \sigma(\mathbf{Fam}(\mathscr{C}_{\mathrm{conn}})) \cong \mathbb{L}(\mathscr{C}_{\mathrm{conn}}).$$

Lemma ([Kaw23b])

The poset $\mathbb{L}(\mathscr{A})$ satisfies ACC \Leftrightarrow Every lower class on \mathscr{A} is *finitely generated*.

Corollary ([Kaw23b])

A locally connected category \mathscr{C} satisfies ACC \Leftrightarrow Every lower class on \mathscr{C}_{conn} is finitely generated.

1/1 28/30

ACC for G-Set

G: a topological group \rightsquigarrow $G-\mathbf{Set}:$ locally connected

Definition

 $A \in \mathscr{E}$ is called an atom $\stackrel{\text{def}}{\Leftrightarrow} A \neq 0$ and $\operatorname{Sub}(A) = \{0, A\}.$

 $(G-\mathbf{Set})_{\mathrm{conn}} = \{ \mathtt{atoms in } G-\mathbf{Set} \} \simeq \{ \mathtt{open subgroups of } G \}$

Corollary ([Kaw23b])

- G: a topological group
 - $\ \, \bullet \ \, \sigma(G\operatorname{-}\mathbf{Set}) \cong \mathbb{L}(\text{open subgroups of } G)$
 - **②** G-Set satisfies ACC ⇔ Every lower set of open subgroups of G is finitely generated.

Thank you!

Today's slide

My homepage

References I

[AR04] J. Adámek and J. Rosický. "On pure quotients and pure subobjects". In: Czechoslovak Math. J. 54(129).3 (2004), pp. 623–636. [AR94] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, Vol. 189, London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1994. [ARV12] J. Adámek, J. Rosický, and E. M. Vitale. "Birkhoff's variety theorem in many sorts". In: Algebra Universalis 68.1-2 (2012), pp. 39-42. [Adá+21] J. Adámek et al. "Finitary monads on the category of posets". In: Math. Structures Comput. Sci. 31.7 (2021), pp. 799-821. [BH12] B. van den Berg and C. Heunen. "Noncommutativity as a colimit". In: Appl. Categ. Structures 20.4 (2012), pp. 393-414. [BMW12] C. Berger, P.-A. Melliès, and M. Weber, "Monads with arities and their associated theories". In: J. Pure Appl. Algebra 216.8-9 (2012), pp. 2029–2048. [Bir35] G. Birkhoff, "On the structure of abstract algebras". In: Math. Proc. Cambridge Philos. Soc. 31.4 (1935), pp. 433-454. [Blo76] S. L. Bloom. "Varieties of ordered algebras". In: J. Comput. System Sci. 13.2 (1976), pp. 200-212. [BG19] J. Bourke and R. Garner. "Monads and theories". In: Adv. Math. 351 (2019), pp. 1024–1071. [CV98] A. Carboni and E. M. Vitale. "Regular and exact completions". In: J. Pure Appl. Algebra 125.1-3 (1998), pp. 79-116. [Gol03] J. S. Golan. Semirings and Affine Equations over Them: Theory and Applications. Vol. 556. Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 2003. pp. xiv+241.

References II

- [Kaw23a] Y. Kawase. Birkhoff's variety theorem for relative algebraic theories. 2023. arXiv: 2304.04382 [math.CT].
- [Kaw23b] Y. Kawase. Filtered colimit elimination from Birkhoff's variety theorem. 2023. arXiv: 2309.05304 [math.CT].
- [Kaw24] Y. Kawase. "Relativized universal algebra via partial Horn logic". in preparation. MA thesis. Kyoto University, 2024.
- [Lin69] F. E. J. Linton. "An outline of functorial semantics". In: Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67). Springer, Berlin, 1969, pp. 7–52.
- [LP23] R. B. B. Lucyshyn-Wright and J. Parker. "Diagrammatic presentations of enriched monads and varieties for a subcategory of arities". In: *Appl. Categ. Structures* 31.5 (2023), Paper No. 40, 39.
- [PV07] E. Palmgren and S. J. Vickers. "Partial Horn logic and cartesian categories". In: Ann. Pure Appl. Logic 145.3 (2007), pp. 314–353.
- [Ros21] J. Rosický. "Metric monads". In: Math. Structures Comput. Sci. 31.5 (2021), pp. 535–552.
- [Wea95] N. Weaver. "Quasi-varieties of metric algebras". In: Algebra Universalis 33.1 (1995), pp. 1–9.

$\kappa\text{-filtered}$ colimits

Definition

A small category $\mathbb I$ is $\kappa\text{-filtered}$ if every $(<\kappa)\text{-small}$ diagram has a cocone in $\mathbb I.$

Definition

A κ -filtered colimit is a colimit of a functor from a κ -filtered small category.

Representing models

Theorem ([Kaw23a; Kaw24])

 $\mathbb{T}:$ a $\kappa\text{-}\mathrm{ary}$ partial Horn theory For every $\mathbb{T}\text{-}\mathrm{model}~M,$ we have:

$$\llbracket \vec{x}. \varphi \rrbracket_M \cong \mathbf{PMod} \ \mathbb{T}(\langle \vec{x}. \varphi \rangle_{\mathbb{T}}, M).$$

Definition

An object $A \in \mathscr{A}$ is κ -presentable if its Hom-functor

$$\mathscr{A}(A,-)\colon \mathscr{A} \to \mathbf{Set}$$

preserves κ -filtered colimits.

Theorem ([Kaw23a; Kaw24])

 \mathbb{T} : a κ -ary partial Horn theory TFAE for a \mathbb{T} -model $M \in \mathbf{PMod} \mathbb{T}$:

1 M is κ -presentable.

2 There exists a κ -ary Horn formula $\vec{x}.\varphi$ s.t. $M \cong \langle \vec{x}.\varphi \rangle_{\mathbb{T}}$.

Example: UDO semirings

Example ([Gol03])

A uniquely difference-ordered semiring consists of:

- a base poset (R, \leq) ;
- total operators $+, \cdot : R \times R \rightarrow R$;
- constants $0, 1 \in R$;
- \bullet a partial operator $\ominus \colon R \times R \rightharpoonup R$ such that

 $b \ominus a$ is defined iff $a \leq b$

which satisfy the following:

- $(R, +, \cdot, 0, 1)$ is a semiring;
- $a \leq a + b$;
- $(a+b) \ominus a = b;$
- $a + (b \ominus a) = b$ whenever $a \le b$.

UDO semirings are algebras over posets.

Example: partial abelian groups

Example ([BH12])

- A partial abelian group consists of:
 - a base set A with a reflexive symmetric relation $\odot \subseteq A \times A$; (a set with commeasurability)
 - a constant $0 \in A$;
 - a total operator $-: A \rightarrow A$;
 - a partial operator $+: A \times A \rightharpoonup A$ such that

a+b is defined iff $a \odot b$

which satisfy the following:

- a ⊙ 0;
- $a \odot (-b)$ whenever $a \odot b$;
- $a \odot (b + c)$ whenever $a \odot b$, $b \odot c$, $c \odot a$;
- (a+b)+c = a + (b+c) whenever $a \odot b$, $b \odot c$, $c \odot a$;
- a + b = b + a whenever $a \odot b$;
- a + 0 = a and $a \odot (-a) = 0$.

Definition

A monoid-graded set is a map $d: X \to M$ from a set X to a monoid (M, \cdot, e) .

Example

- A monoid-graded ring consists of:
 - \bullet a base monoid-graded set $(X, \mathrm{d}, M, \cdot, e);$
 - a constant $1 \in X$;
 - total operators $\otimes : X \times X \to X$, $0: M \to X$, $-: X \to X$;

• a partial operator $+: X \times X \rightarrow X$ s.t. x + y is defined iff d(x) = d(y) which satisfy the following:

- d(1) = e, $d(x \otimes y) = d(x)d(y)$, d(0(a)) = a, d(-x) = d(x);
- d(x + y) = d(x) whenever d(x) = d(y);
- $(x \otimes y) \otimes z = x \otimes (y \otimes z), \quad 1 \otimes x = x = x \otimes 1;$
- x + 0(d(x)) = x, x + (-x) = 0(d(x));
- (x+y)+z = x + (y+z) whenever d(x) = d(y) = d(z);
- x + y = y + x whenever d(x) = d(y);
- $(x+y) \otimes z = x \otimes z + y \otimes z$ and $z \otimes (x+y) = z \otimes x + z \otimes y$ whenever d(x) = d(y).

Closed monomorphisms

Definition ([Kaw23a; Kaw24])

Let \mathbb{T} be a κ -ary partial Horn theory over an S-sorted κ -ary signature Σ .

A monomorphism A → B in PMod T is called T-closed (or Σ-closed) if the following diagrams form pullback squares for any f, R ∈ Σ.

$$\begin{array}{cccc} \operatorname{Dom}(\llbracket f \rrbracket_A) & \hookrightarrow & \prod_{i < \alpha} A_{s_i} & & \llbracket R \rrbracket_A & \hookrightarrow & \prod_{i < \alpha} A_{s_i} \\ & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ \operatorname{Dom}(\llbracket f \rrbracket_B) & \hookrightarrow & \prod_{i < \alpha} B_{s_i} & & & \llbracket R \rrbracket_B & \hookrightarrow & \prod_{i < \alpha} B_{s_i} \end{array}$$

A morphism h: A → B in PMod T is called T-dense (or Σ-dense) if h factors through no T-closed proper subobject of B.

Local retracts

Definition ([Kaw23b; Kaw24])

A morphism $p: X \to Y$ in a category \mathscr{A} is called a κ -local retraction if for every κ -presentable object $\Gamma \in \mathscr{A}$ and every morphism $f: \Gamma \to Y$, there exists a morphism $g: \Gamma \to X$ such that $p \circ g = f$.

A κ -local retraction is also called a κ -pure quotient in [AR04].

Definition ([Kaw23b; Kaw24])

Let $U: \mathscr{A} \to \mathscr{C}$ be a functor. A morphism p in \mathscr{A} is called a (U, κ) -local retraction if Up is a κ -local retraction in \mathscr{C} .

The ascending chain condition for categories

Example ([Kaw23b])

- $\textcircled{\sc 0}$ Set, Pos, and Ab satisfy ACC.
- Ring and Lat_{0,1} do not satisfy ACC.
- S/Set satisfies ACC $\Leftrightarrow S$ is finite. (S: a set)
- Set \rightarrow satisfies ACC.
- Set \rightarrow does not satisfy ACC.
- **\odot** Set^{ω} satisfies ACC.
- **3** $\mathbf{Set}^{\omega^{\mathrm{op}}}$ does not satisfy ACC.
- The category URel of sets with a unary relation satisfies ACC.
- **(D)** The category **BRel** of sets with a binary relation does not satisfy ACC.