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Strong and regular epimorphisms

Strong epimorphisms = morphisms having the left lifting property w.r.t. every
monomorphism.

· ·

· ·

strong epi mono
∃!

Regular epimorphisms = morphisms being the coequalizer of some parallel pair of
morphisms.

· · ·regular epi

Theorem ([Gabriel and Ulmer 1971])

In a locally presentable category,

strong epis = transfinite composites of regular epis
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Example

Cat: the category of small categories.

A0 A2

A1

reg. epi

e

re
g.
ep
i in Cat
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Example

2Cat: the category of small 2-categories.

A0 A3

A1 A2

reg. epi

e

reg. epi
reg

. e
pi

in 2Cat
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Actually...

Fact I
The length of the regular epi chains in the previous slides cannot be shorter.

Fact II
1 In Cat, every strong epimorphism can be decomposed into two regular

epimorphisms.

2 In 2Cat, every strong epimorphism can be decomposed into three regular
epimorphisms.

How do we prove them?

1/1 6/28



1 Strong and regular epimorphisms

2 The decomposition number

3 Partial Horn theories

4 Main results

1/1 7/28



Definition

A regular decomposition (of length α) of A e X in C is a cocts. functor D s.t.

1

α + 1 A/C

⌜α⌝
⌜e⌝

D

commutes in CAT;

(1: the terminal, α + 1 := {0 < 1 < · · · < α})
Dβ,β+1 is a regular epimorphism for any 0 ≤ β < α.

A X

· · · · · ·
∼=D0 D1

Dα

e

D0,1 D1,2

· · ·
in C
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The decomposition number

Definition
A : a locally presentable category.

1 The decomposition number δ(f) of A
f

B in A is the smallest ordinal

number α s.t. f = ∃ m
mono
◦ ∃e with a reg.decomp. of length α of e.

A B

A0 A1 A2 · · · Aα

e

f

m

2 δ(A ) := min{α | δ(f) < α for every f in A }.

Theorem ([Gabriel and Ulmer 1971])

A : a locally λ-presentable category.
=⇒ ∀f in A , δ(f) ≤ λ. Therefore, δ(A ) ≤ λ+ 1.
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The decomposition number

Example

Pos: the category of posets.

A B

X

reg. epi

f

m
on
o in Pos

In this case, δ(f) = 1 and δ(Pos) = 2.
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The small object argument

A : locally λ-presentable category.

A A1 A2 Aω Aω+1 Aλ

B

f

q0,1

f1

q1,2

f2

· · ·

fω

qω,ω+1

fω+1

· · ·

fλ

in A

A1 : the coimage of f (:= the coequalizer of the kernel pair of f)

A2 : the coimage of f1

Aω : the colimit of the chain (An)n<ω

Aω+1 : the coimage of fω

Eventually, fα becomes monic. Let σ(f) denote the smallest ordinal number α
s.t. fα is monic.

Corollary

δ(f) ≤ σ(f)
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Theorem
In a locally presentable category,

δ(f) = σ(f).

Proof.

For simplicity, we assume δ(f) = n < ω.

X0 X1 X2 · · · Xn

A1 · · · · ·

A2 · · · ·

··
·

· · ·

An

f

q0,1

p1

ep
i

p2

ep
i

p3 pn

q1,2 ep
i

q2,3

qn−1,n

p.o. p.o. · · · p.o.

p.o. · · · p.o.

Thus, we have σ(f) ≤ n.
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Example (recall)

A0 A2

A1

reg. epi

e

re
g.
ep
i in Cat

=⇒ δ(e) = σ(e) = 2.
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Example (recall)

A0 A3

A1 A2

reg. epi

e

reg. epi
reg

. e
pi

in 2Cat

=⇒ δ(e) = σ(e) = 3.
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Milestones

✓ Fact I (recall)

The regular epi chains in our examples cannot be shorter.

Fact II (recall)
1 In Cat, every strong epimorphism can be decomposed into two

regular epimorphisms.

2 In 2Cat, every strong epimorphism can be decomposed into three
regular epimorphisms.
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Partial Horn theories

Σ: an S-sorted (λ-ary) signature.

A term τ ::= x | f(τi)i<α;
A (λ-ary) Horn formula φ ::= ⊤ |

∧
i<α φi | τ = τ ′ | R(τi)i<α;

A (λ-ary) context · · · x⃗ = (xi)i<α (a family of distinct variables);

x⃗.τ : a term-in-context, i.e., all variables of τ are in the context x⃗;

x⃗.φ: a Horn formula-in-context, i.e., all variables of φ are in the context x⃗.

Here, α < λ.

Definition
1 A (λ-ary) Horn sequent over Σ is an expression of the form

φ x⃗ ψ (“φ implies ψ”)

(φ,ψ are λ-ary Horn formulas over Σ in the same λ-ary context x⃗.)

2 A (λ-ary) partial Horn theory T over Σ is a set of (λ-ary) Horn sequents over
Σ.
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Horn vs partial Horn

What is the difference between ordinary Horn theory and partial Horn theory?
⇝ It lies in the concept of models.

(ordinary) Horn theory partial Horn theory

Axiom Horn sequent φ
x⃗

ψ Horn sequent φ
x⃗

ψ

Interpretation

of func.symb.
total map Ms⃗

JfKM Ms partial map Ms⃗

JfKM Ms

Interpretation

of rel.symb.
subset JRKM ⊆ Ms⃗ subset JRKM ⊆ Ms⃗

Validity of φ “φ holds.” “All terms in φ are defined and φ holds.”

Validity of

φ
x⃗

ψ
“If φ holds then ψ holds.”

“If all terms in φ are defined and φ holds,

then all terms in ψ are defined and ψ holds.”

Especially,

An equation τ = τ holds iff the value of the partial map JτKM is defined.

So, we will use the abbreviation τ↓ for τ = τ .
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Categories of partial models

Notation
T: a partial Horn theory.

PModT : the category of (partial) models of T.

Fact
A category A is locally λ-presentable ⇐⇒ A ≃ PModT for some λ-ary partial
Horn theory T.
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Example: small categories

Example (small categories)

The S := {ob,mor}-sorted signature Σcat consists of:

id : ob→ mor, d: mor→ ob, c : mor→ ob, ◦ : mor ⊓mor→ mor.

The partial Horn theory Tcat over Σcat consists of:

⊤ x:ob id(x)↓, ( id is total. )

⊤ f :mor
d(f)↓ ∧ c(f)↓, ( d and c are total. )

(g ◦ f)↓ g,f :mor
d(g) = c(f), ( g ◦ f is defined iff d(g) = c(f). )

and so on.
⇝ We have PModTcat

∼= Cat.
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Example: small 2-categories

Example (small 2-categories)

There is an S := {0, 1, 2}-sorted signature Σ2cat and a finitary PHT T2cat over
Σ2cat s.t.

PModT2cat
∼= 2Cat.
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Example: posets

Example (posets)

Let S := {∗}, Σpos := {≤ : ∗ ⊓ ∗}.
The partial Horn theory Tpos over Σpos consists of:

⊤ x x ≤ x, x ≤ y ∧ y ≤ x x, y
x = y, x ≤ y ∧ y ≤ z x, y, z x ≤ z.

Then, we have PModTpos
∼= Pos.
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Gauges

Definition
T: a λ-ary PHT.
A gauge (of length α) for T is an assignment to each term x⃗.τ in a λ-ary context,
of the following data:

an ordinal number ♯(x⃗.τ)< α;

a set Def(x⃗.τ) of pairs (σ0, σ1) of terms in the context x⃗

such that, for every x⃗.τ ,

T ⊨
(
τ = τ x⃗ ∧

(σ0,σ1)∈Def(x⃗.τ) σ
0 = σ1

)
;

∀(σ0, σ1) ∈ Def(x⃗.τ). ♯(x⃗.σ0), ♯(x⃗.σ1) < ♯(x⃗.τ).

Theorem
T: a λ-ary PHT with a gauge of length α.
=⇒ δ(f) ≤ α (∀f in PModT), hence δ(PModT) ≤ α+ 1.
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How to construct a gauge?

Definition (depth)

T: a λ-ary partial Horn theory.

Let x⃗ be a λ-ary context.

Term1(x⃗) := {x⃗.τ | T ⊨ (τ↓ x⃗ ⊤)}.
Termβ+1(x⃗) := Termβ(x⃗)∪x⃗.τ ∃E ⊆ Termβ(x⃗)

2 s.t. T ⊨ (τ↓ x⃗
∧

(σ0,σ1)∈E

σ0 = σ1)

 .

Termsup β(x⃗) :=
∪
β

Termβ(x⃗).

dep(x⃗) := min{α | Termα(x⃗) = Termα+1(x⃗)}.
dep(T) := min{α | ∀x⃗ : λ-ary. dep(x⃗) < α} (the depth of T).

Lemma

If every x⃗.τ belongs to Termα(x⃗) for some α (
def⇔: T is essentially algebraic)

=⇒ T has a gauge of length “dep(T)− 1.”
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Theorem

T : essentially algebraic =⇒ δ(PModT) ≤

{
dep(T) if dep(T): a successor

dep(T) + 1 else

Example

δ(Pos) ≤ dep(Tpos) = 2;

δ(Cat) ≤ dep(Tcat) = 3;

δ(2Cat) ≤ dep(T2cat) = 4.

Therefore,

δ(Pos) = 2;

δ(Cat) = 3;

δ(2Cat) = 4.
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Milestones

✓ Fact I (recall)

The regular epi chains in our examples cannot be shorter.

✓
Fact II (recall)

1 In Cat, every strong epimorphism can be decomposed into two
regular epimorphisms.

2 In 2Cat, every strong epimorphism can be decomposed into three
regular epimorphisms.
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Thank you!

Today’s slides
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Future directions

1 Can we replace “=” with an arbitrary relation symbol R? (e.g. coinserters in
Pos rather than regular epis)

2 Is there a locally finitely presentable category A s.t. δ(A ) = ω? (We already
have examples s.t. δ(A ) = 1, 2, 3, 4, . . . and ω + 1.)

3 Is there a better way to determine δ(A ) completely?

4 Is there any connection with other logical theories (rather than partial Horn
theories)? (e.g. generalized algebraic theories (GAT), essentially algebraic
theories, etc.)
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Motivation

In abstract algebra (or universal algebra), the homomorphism theorem is
fundamental. Categorically, it can be treated by regular categories.

Recall
In a regular category,

Every morphism can be decomposed into a regular epimorphism and a
monomorphism.

Such a decomposition is always given in the “canonical” way: taking a
quotient by the kernel pair.

A B

A/Kerf

f

The class of regular epimorphisms is stable under pullbacks.
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Motivation

Example

The regular categories include various categories considered in classical universal
algebra: groups, monoids, etc.

The above examples are captured by the following general fact:

Fact
Monadic categories over Set are regular.
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Motivation

There are several directions to generalize classical universal algebra
“syntactically.” For example:

Enriching V -enriched λ-ary monadic categories over V [Rosický and Tendas
2024].

Relativizing (Set-enriched) λ-ary monadic categories over a locally
λ-presentable category [Kawase 2024].

Enr. & Rel. V -enriched λ-ary monadic categories over a locally λ-presentable
V -category [Rosický 2021].

Enr. & Rel.

Enr. Rel.

Classical univ. alg.

rela
tivi

ze enrich

enrich rela
tivi

ze
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Motivation

A problem

Monadic categories over a locally presentable category are NOT regular in general,
even when the base category is regular.

Example

Cat, the category of small categories, are finitary monadic over Quiv, the
category of quivers (=directed graphs). However, Cat is not regular even if Quiv
is regular.
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Representing models
T: a λ-ary partial Horn theory.

Construction

x⃗.φ: a κ(≥ λ)-ary Horn formula (in a κ-ary context).

A term x⃗.τ is defined under x⃗.φ
def⇔ φ x⃗ τ↓ can be derived from T.

(written T ⊨ (φ x⃗ τ↓))
The following gives an equivalence relation on the terms defined under x⃗.φ:

τ ∼ τ ′ def⇔ T ⊨ (φ x⃗ τ = τ ′).

Quotienting all of the terms defined under x⃗.φ by ∼, we obtain a T-model
⟨x⃗.φ⟩T, called the representing T-model.

Fact
1 For every T-model M , Jx⃗.φKM ∼= PModT(⟨x⃗.φ⟩T,M).

2 A T-model M is κ(≥ λ)-presentable ⇐⇒ M ∼= ⟨x⃗.φ⟩T for some κ-ary Horn
formula x⃗.φ.
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How to get a lower bound

Definition
T: a λ-ary partial Horn theory.

L: a set of terms in a common context.

eq(L) :=


∧

τ, τ ′ ∈ L
with the same sort

τ = τ ′

 .

x⃗: a λ-ary context.

dec(x⃗) := min
{
α T ⊨

(
eq(Termα(x⃗))

x⃗ eq(Termα+1(x⃗))
)}

.

dec(T) := min{α | ∀x⃗ : λ-ary. dec(x⃗) < α} (the decay number of T).

Remark

dec(x⃗) ≤ dep(x⃗), hence dec(T) ≤ dep(T).
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Proposition

For ⟨x⃗.⊤⟩ ! 1 in PModT, δ(!) = dec(x⃗).

Example

Let T be the single-sorted finitary PHT defined as follows:

Σ := { cn : constants (for n ≥ 0) },

T :=

{
⊤ c0 = c0

c0 = cn cn+1 = cn+1 (for n ≥ 0)

}
.

Then,
Term1() = {c0, c1}, Term2() = {c0, c1, c2}, Term3() = {c0, c1, c2, c3}, . . .

dec() = dep() = ω.

in PModT.
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Corollary

dec(T) ≤ δ(PModT).

Theorem (summary)
1 If T is essentially algebraic,

dec(T) ≤ δ(PModT) ≤

{
dep(T) if dep(T): a successor

dep(T) + 1 else

2 If T: ess.alg., dec(T) = dep(T), and it is a successor, then

δ(PModT) = dep(T).
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