On the decomposition of a strong epimorphism into regular epimorphisms

Yuto Kawase

RIMS, Kyoto University

February 12, 2025.

Kyoto Category Theory Meeting

 $\leftarrow \mathsf{Today's} \mathsf{ slides}$

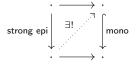
This work is supported by JSPS KAKENHI Grant Numbers JP24KJ1462.

2 The decomposition number

Partial Horn theories

Strong and regular epimorphisms

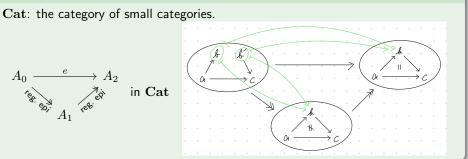
Strong epimorphisms = morphisms having the left lifting property w.r.t. every monomorphism.



 $\label{eq:Regular epimorphisms} \begin{array}{l} \mbox{Regular epimorphisms} = \mbox{morphisms being the coequalizer of some parallel pair of morphisms.} \end{array}$

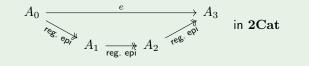
$$\underbrace{\longrightarrow}_{\cdot} \cdot \overset{\text{regular epi}}{\longrightarrow} \cdot$$

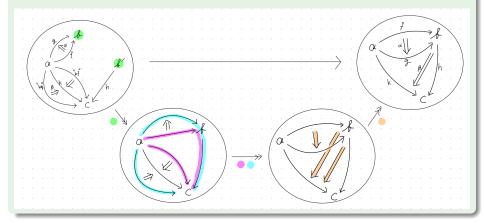
Example



Example

 $\mathbf{2Cat}$: the category of small 2-categories.





Actually...

Fact I

The length of the regular epi chains in the previous slides cannot be shorter.

Fact II

- In Cat, every strong epimorphism can be decomposed into two regular epimorphisms.
- In 2Cat, every strong epimorphism can be decomposed into <u>three</u> regular epimorphisms.

How do we prove them?

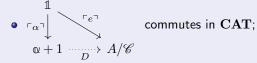
Strong and regular epimorphisms

2 The decomposition number

Partial Horn theories

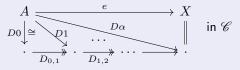
Definition

A regular decomposition (of length α) of $A \xrightarrow{e} X$ in \mathscr{C} is a cocts. functor D s.t.



(1: the terminal, $\omega + 1 := \{0 < 1 < \dots < \alpha\}$)

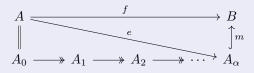
• $D_{\beta,\beta+1}$ is a regular epimorphism for any $0 \le \beta < \alpha$.



The decomposition number

Definition

- \mathscr{A} : a locally presentable category.
 - The decomposition number $\delta(f)$ of $A \xrightarrow{f} B$ in \mathscr{A} is the smallest ordinal number α s.t. $f = \exists \underline{m} \circ \exists e$ with a reg.decomp. of length α of e.

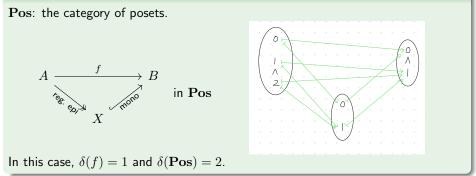


Theorem ([Gabriel and Ulmer 1971])

 $\begin{array}{ll} \mathscr{A}\colon \text{a locally }\lambda\text{-presentable category.}\\ \implies \forall f \text{ in }\mathscr{A}, \, \delta(f)\leq \lambda. \ \ \, \text{Therefore, } \delta(\mathscr{A})\leq \lambda+1. \end{array}$

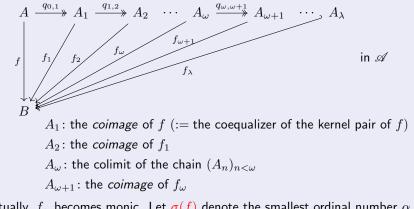
The decomposition number

Example



The small object argument

 \mathscr{A} : locally λ -presentable category.



Eventually, f_{α} becomes monic. Let $\sigma(f)$ denote the smallest ordinal number α s.t. f_{α} is monic.

Corollary

$$\delta(f) \le \sigma(f)$$

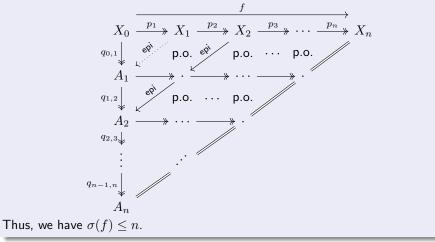
Theorem

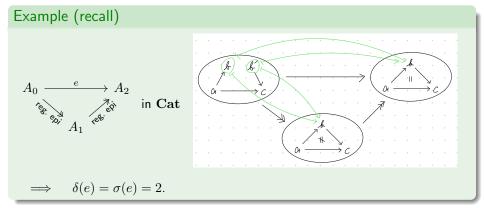
In a locally presentable category,

$$\delta(f) = \sigma(f).$$

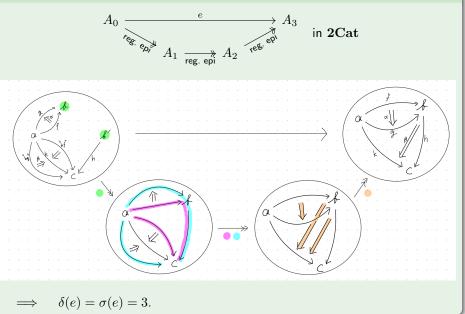
Proof.

For simplicity, we assume $\delta(f) = n < \omega$.





Example (recall)



Milestones

Fact I (recall)

The regular epi chains in our examples cannot be shorter.

Fact II (recall)

- In Cat, every strong epimorphism can be decomposed into <u>two</u> regular epimorphisms.
- In 2Cat, every strong epimorphism can be decomposed into <u>three</u> regular epimorphisms.

Strong and regular epimorphisms

2 The decomposition number

3 Partial Horn theories

Partial Horn theories

 Σ : an S-sorted (λ -ary) signature.

• A term $\tau ::= x \mid f(\tau_i)_{i < \alpha}$;

- A (λ -ary) Horn formula $\varphi ::= \top | \bigwedge_{i < \alpha} \varphi_i | \tau = \tau' | R(\tau_i)_{i < \alpha}$;
- A (λ -ary) context $\cdots \vec{x} = (x_i)_{i < \alpha}$ (a family of distinct variables);
- $\vec{x}.\tau$: a *term-in-context*, i.e., all variables of τ are in the context \vec{x} ;

• $\vec{x}.\varphi$: a Horn formula-in-context, i.e., all variables of φ are in the context \vec{x} . Here, $\alpha < \lambda$.

Definition

() A (λ -ary) Horn sequent over Σ is an expression of the form

$$\varphi \vdash \vec{x} \psi$$
 (" φ implies ψ ")

 $(\varphi, \psi \text{ are } \lambda \text{-ary Horn formulas over } \Sigma \text{ in the same } \lambda \text{-ary context } \vec{x}.)$

A (λ-ary) partial Horn theory T over Σ is a set of (λ-ary) Horn sequents over Σ.

Horn vs partial Horn

What is the difference between ordinary Horn theory and partial Horn theory? \rightsquigarrow It lies in the concept of models.

	(ordinary) Horn theory	partial Horn theory
Axiom	Horn sequent $\varphi \vdash \stackrel{\vec{x}}{-\!\!-\!\!-} \psi$	Horn sequent $arphi \vdash \stackrel{ec{x}}{\vdash} \psi$
Interpretation of func.symb.	total map $M_{\vec{s}} \xrightarrow{[\![f]\!]_M} M_s$	partial map $M_{ec s} \stackrel{\llbracket f \rrbracket_{M_{\chi}}}{\longrightarrow} M_s$
Interpretation of rel.symb.	$subset\;[\![R]\!]_M\subseteq M_{\vec{s}}$	$subset\;[\![R]\!]_M\subseteq M_{\vec{s}}$
Validity of φ	" $arphi$ holds."	"All terms in $arphi$ are defined and $arphi$ holds."
Validity of $\varphi \vdash \vec{x} \psi$	"If $arphi$ holds then ψ holds."	"If all terms in φ are defined and φ holds, then all terms in ψ are defined and ψ holds."

Especially,

An equation $\tau = \tau$ holds iff the value of the partial map $\llbracket \tau \rrbracket_M$ is defined.

So, we will use the abbreviation $\tau \downarrow$ for $\tau = \tau$.

Categories of partial models

Notation

 $\mathbb{T}:$ a partial Horn theory.

PMod \mathbb{T} : the category of (partial) models of \mathbb{T} .

Fact

A category \mathscr{A} is locally λ -presentable $\iff \mathscr{A} \simeq \mathbf{PMod} \mathbb{T}$ for some λ -ary partial Horn theory \mathbb{T} .

Example: small categories

Example (small categories)

The $S := {ob, mor}$ -sorted signature Σ_{cat} consists of:

 $\mathrm{id} \colon \mathrm{ob} \to \mathrm{mor}, \quad \mathrm{d} \colon \mathrm{mor} \to \mathrm{ob}, \quad \mathrm{c} \colon \mathrm{mor} \to \mathrm{ob}, \quad \circ \colon \mathrm{mor} \sqcap \mathrm{mor} \to \mathrm{mor}.$

The partial Horn theory \mathbb{T}_{cat} over Σ_{cat} consists of:

$$\top \vdash \underline{x:ob} \operatorname{id}(x) \downarrow, \qquad (\text{ id is total.})$$
$$\top \vdash \underline{f:mor} \operatorname{d}(f) \downarrow \wedge \operatorname{c}(f) \downarrow, \qquad (\text{ d and c are total.})$$

 $(g \circ f) \downarrow \overset{q,f:\mathrm{mor}}{\longrightarrow} \mathrm{d}(g) = \mathrm{c}(f), \qquad (\ g \circ f \text{ is defined iff } \mathrm{d}(g) = \mathrm{c}(f). \)$

and so on. \rightsquigarrow We have $\mathbf{PMod} \mathbb{T}_{cat} \cong \mathbf{Cat}$.

Example: small 2-categories

Example (small 2-categories)

There is an $S:=\{0,1,2\}\text{-sorted signature }\Sigma_{2cat}\text{ and a finitary PHT }\mathbb{T}_{2cat}\text{ over }\Sigma_{2cat}\text{ s.t.}$

 $\mathbf{PMod}\,\mathbb{T}_{2\mathrm{cat}}\cong\mathbf{2Cat}.$

Example: posets

Example (posets)

Let $S := \{*\}$, $\Sigma_{pos} := \{\le : * \sqcap *\}$. The partial Horn theory \mathbb{T}_{pos} over Σ_{pos} consists of:

$$\top \vdash \underbrace{x}_{} x \leq x, \quad x \leq y \land y \leq x \vdash \underbrace{x, y}_{} x = y, \quad x \leq y \land y \leq z \vdash \underbrace{x, y, z}_{} x \leq z.$$

Then, we have $\mathbf{PMod} \mathbb{T}_{pos} \cong \mathbf{Pos}$.

Strong and regular epimorphisms

2 The decomposition number

Partial Horn theories

Gauges

Definition

 $\mathbb{T}:$ a $\lambda\text{-}\mathsf{ary}$ PHT.

A gauge (of length α) for \mathbb{T} is an assignment to each term $\vec{x}.\tau$ in a λ -ary context, of the following data:

- an ordinal number $\sharp(\vec{x}.\tau) < \alpha$;
- a set $\mathrm{Def}(\vec{x}.\tau)$ of pairs (σ^0,σ^1) of terms in the context \vec{x}

such that, for every $\vec{x}.\tau$,

•
$$\mathbb{T} \models \left(\tau = \tau \vdash \vec{x} \vdash \bigwedge_{(\sigma^0, \sigma^1) \in \mathrm{Def}(\vec{x}.\tau)} \sigma^0 = \sigma^1 \right);$$

• $\forall (\sigma^0, \sigma^1) \in \operatorname{Def}(\vec{x}.\tau). \ \ \sharp(\vec{x}.\sigma^0), \sharp(\vec{x}.\sigma^1) < \sharp(\vec{x}.\tau).$

Theorem

$$\begin{split} \mathbb{T}: \ & \text{λ-ary PHT$ with a gauge of length α.} \\ \implies \delta(f) \leq \alpha \ (\forall f \text{ in } \mathbf{PMod} \, \mathbb{T}), \ \text{hence } \delta(\mathbf{PMod} \, \mathbb{T}) \leq \alpha + 1. \end{split}$$

How to construct a gauge?

Definition (depth)

 $\mathbb{T}:$ a $\lambda\text{-}\mathrm{ary}$ partial Horn theory.

• Let \vec{x} be a $\lambda\text{-ary context.}$

$$\operatorname{lerm}_1(\vec{x}) := \{ \vec{x}.\tau \mid \mathbb{T} \vDash (\tau \downarrow \vdash \vec{x} \dashv \top) \}.$$

$$\operatorname{Term}_{\beta+1}(\vec{x}) := \operatorname{Term}_{\beta}(\vec{x}) \cup \left\{ \vec{x}.\tau \middle| \exists E \subseteq \operatorname{Term}_{\beta}(\vec{x})^2 \text{ s.t. } \mathbb{T} \vDash (\tau \downarrow \vdash \vec{x} \mapsto \bigwedge_{(\sigma^0, \sigma^1) \in E} \sigma^0 = \sigma^1) \right\}.$$
$$\operatorname{Term}_{\sup \beta}(\vec{x}) := \bigcup_{\beta} \operatorname{Term}_{\beta}(\vec{x}).$$
$$\operatorname{ep}(\vec{x}) := \min\{\alpha \mid \operatorname{Term}_{\alpha}(\vec{x}) = \operatorname{Term}_{\alpha+1}(\vec{x})\}.$$
$$\operatorname{ep}(\mathbb{T}) := \min\{\alpha \mid \forall \vec{x}: \lambda \text{-arv. } \operatorname{dep}(\vec{x}) < \alpha\} \quad \text{(the depth of } \mathbb{T}).$$

Lemma

• d

If every $\vec{x}.\tau$ belongs to $\operatorname{Term}_{\alpha}(\vec{x})$ for some α ($\stackrel{\text{def}}{\Leftrightarrow}$: \mathbb{T} is essentially algebraic) $\implies \mathbb{T}$ has a gauge of length "dep $(\mathbb{T}) - 1$."

Theorem

$$\mathbb{T} \colon \text{essentially algebraic} \implies \delta(\mathbf{PMod}\,\mathbb{T}) \leq \begin{cases} \mathsf{dep}(\mathbb{T}) & \text{if } \mathsf{dep}(\mathbb{T}) \colon \text{a successor} \\ \mathsf{dep}(\mathbb{T}) + 1 & \text{else} \end{cases}$$

Example

$$\begin{split} \delta(\mathbf{Pos}) &\leq \mathsf{dep}(\mathbb{T}_{\mathrm{pos}}) = 2; \\ \delta(\mathbf{Cat}) &\leq \mathsf{dep}(\mathbb{T}_{\mathrm{cat}}) = 3; \\ \delta(\mathbf{2Cat}) &\leq \mathsf{dep}(\mathbb{T}_{2\mathrm{cat}}) = 4. \end{split}$$

Therefore,

$$\begin{split} \delta(\mathbf{Pos}) &= 2;\\ \delta(\mathbf{Cat}) &= 3;\\ \delta(\mathbf{2Cat}) &= 4. \end{split}$$

Milestones

Fact I (recall)

The regular epi chains in our examples cannot be shorter.

Fact II (recall)

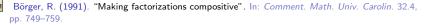
- In Cat, every strong epimorphism can be decomposed into <u>two</u> regular epimorphisms.
- In 2Cat, every strong epimorphism can be decomposed into <u>three</u> regular epimorphisms.

Thank you!

Today's slides

References I

Adamek, J. and M. Hebert (2009). "Quasi-equations in locally presentable categories". In: *Cah. Topol. Géom. Différ. Catég.* 50.4, pp. 273–297.



Gabriel, P. and F. Ulmer (1971). *Lokal präsentierbare Kategorien*. Vol. Vol. 221. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, pp. v+200.

Kawase, Y. (2024). Relativized universal algebra via partial Horn logic. arXiv: 2403.19661 [math.CT].

MacDonald, J. L. and A. Stone (1982). "The tower and regular decomposition". In: Cahiers Topologie Géom. Différentielle 23.2, pp. 197–213.

Rosický, J. (2021). "Metric monads". In: Math. Structures Comput. Sci. 31.5, pp. 535-552.

Rosický, J. and G. Tendas (2024). Towards enriched universal algebra. arXiv: 2310.11972 [math.CT]. URL: https://arxiv.org/abs/2310.11972.

Future directions

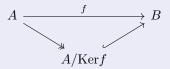
- Can we replace "=" with an arbitrary relation symbol R? (e.g. coinserters in Pos rather than regular epis)
- **②** Is there a locally finitely presentable category \mathscr{A} s.t. $\delta(\mathscr{A}) = \omega$? (We already have examples s.t. $\delta(\mathscr{A}) = 1, 2, 3, 4, \ldots$ and $\omega + 1$.)
- **③** Is there a better way to determine $\delta(\mathscr{A})$ completely?
- Is there any connection with other logical theories (rather than partial Horn theories)? (e.g. generalized algebraic theories (GAT), essentially algebraic theories, etc.)

In abstract algebra (or universal algebra), the homomorphism theorem is fundamental. Categorically, it can be treated by *regular categories*.

Recall

In a regular category,

- Every morphism can be decomposed into a *regular epimorphism* and a *monomorphism*.
- Such a decomposition is always given in the "canonical" way: taking a quotient by the *kernel pair*.



• The class of regular epimorphisms is stable under pullbacks.

Example

The regular categories include various categories considered in classical universal algebra: groups, monoids, etc.

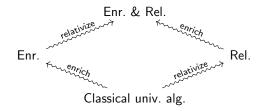
The above examples are captured by the following general fact:

Fact

Monadic categories over Set are regular.

There are several directions to generalize classical universal algebra "syntactically." For example:

- Enriching \mathscr{V} -enriched λ -ary monadic categories over \mathscr{V} [Rosický and Tendas 2024].
- Relativizing (Set-enriched) λ -ary monadic categories over a locally λ -presentable category [Kawase 2024].
- Enr. & Rel. \mathscr{V} -enriched λ -ary monadic categories over a locally λ -presentable \mathscr{V} -category [Rosický 2021].



A problem

Monadic categories over a locally presentable category are NOT regular in general, even when the base category is regular.

Example

Cat, the category of small categories, are finitary monadic over Quiv, the category of quivers (=directed graphs). However, Cat is not regular even if Quiv is regular.

Representing models

 $\mathbb{T}:$ a $\lambda\text{-}\mathrm{ary}$ partial Horn theory.

Construction

 $\vec{x}. \varphi$: a $\kappa (\geq \lambda)$ -ary Horn formula (in a κ -ary context).

- A term $\vec{x}.\tau$ is defined under $\vec{x}.\varphi \stackrel{\text{def}}{\Leftrightarrow} \varphi \vdash \vec{x} \quad \tau \downarrow$ can be derived from \mathbb{T} . (written $\mathbb{T} \models (\varphi \vdash \vec{x} \quad \tau \downarrow)$)
- The following gives an equivalence relation on the terms defined under $\vec{x}.\varphi$:

• Quotienting all of the terms defined under $\vec{x}.\varphi$ by \sim , we obtain a \mathbb{T} -model $\langle \vec{x}.\varphi \rangle_{\mathbb{T}}$, called the representing \mathbb{T} -model.

Fact

• For every \mathbb{T} -model M, $[\![\vec{x}.\varphi]\!]_M \cong \mathbf{PMod} \mathbb{T}(\langle \vec{x}.\varphi \rangle_{\mathbb{T}}, M).$

 $\textbf{O} \ \mathsf{A} \ \mathbb{T}\text{-model} \ M \ \text{is} \ \kappa(\geq \lambda) \text{-presentable} \iff M \cong \langle \vec{x}.\varphi \rangle_{\mathbb{T}} \ \text{for some} \ \kappa\text{-ary Horn} \ \text{formula} \ \vec{x}.\varphi.$

How to get a lower bound

Definition

- $\mathbb{T}:$ a $\lambda\text{-}\mathrm{ary}$ partial Horn theory.
 - L: a set of terms in a common context.

$$\operatorname{eq}(L):=\left(egin{array}{cc} & \bigwedge & & au= au' \ au, au'\in L & & \ & ext{with the same sort} \end{array}
ight).$$

• \vec{x} : a λ -ary context.

$$\operatorname{\mathsf{dec}}(\vec{x}) := \min\left\{\alpha \mid \mathbb{T} \vDash \left(\operatorname{\mathsf{eq}}(\operatorname{Term}_{\alpha}(\vec{x})) \vdash \vec{x} - \operatorname{\mathsf{eq}}(\operatorname{Term}_{\alpha+1}(\vec{x}))\right)\right\}.$$

• $\operatorname{dec}(\mathbb{T}) := \min\{\alpha \mid \forall \vec{x} : \lambda \text{-ary. } \operatorname{dec}(\vec{x}) < \alpha\}$ (the decay number of \mathbb{T}).

Remark

$$\operatorname{dec}(\vec{x}) \leq \operatorname{dep}(\vec{x}), \text{ hence } \operatorname{dec}(\mathbb{T}) \leq \operatorname{dep}(\mathbb{T}).$$

Proposition

For
$$\langle \vec{x}.\top \rangle \stackrel{!}{\longrightarrow} 1$$
 in **PMod** \mathbb{T} , $\delta(!) = \operatorname{dec}(\vec{x})$.

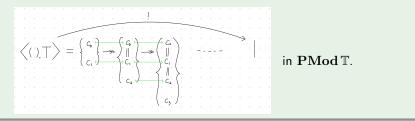
Example

Let ${\mathbb T}$ be the single-sorted finitary PHT defined as follows:

$$\begin{split} \Sigma &:= \left\{ \begin{array}{c} c_n \colon \text{constants} & (\text{for } n \ge 0) \end{array} \right\}, \\ \mathbb{T} &:= \left\{ \begin{array}{c} \top \longmapsto c_0 = c_0 \\ c_0 = c_n \longmapsto c_{n+1} = c_{n+1} & (\text{for } n \ge 0) \end{array} \right\} \end{split}$$

Then,

Term₁() = {
$$c_0, c_1$$
}, Term₂() = { c_0, c_1, c_2 }, Term₃() = { c_0, c_1, c_2, c_3 }, ...
dec() = dep() = ω .



Corollary

 ${\rm dec}(\mathbb{T}) \leq \delta(\operatorname{\mathbf{PMod}} \mathbb{T}).$

Theorem (summary)

 $\textcircled{0} \quad \text{If } \mathbb{T} \text{ is essentially algebraic,}$

$$\operatorname{dec}(\mathbb{T}) \leq \delta(\operatorname{\mathbf{PMod}} \mathbb{T}) \leq \begin{cases} \operatorname{dep}(\mathbb{T}) & \text{if } \operatorname{dep}(\mathbb{T}): \text{ a successor} \\ \operatorname{dep}(\mathbb{T}) + 1 & \text{else} \end{cases}$$

2 If \mathbb{T} : ess.alg., dec $(\mathbb{T}) = dep(\mathbb{T})$, and it is a successor, then

 $\delta(\mathbf{PMod}\,\mathbb{T}) = \mathsf{dep}(\mathbb{T}).$